

South Georgian Bay-Muskoka REGIONAL INFRASTRUCTURE PLAN

December 16, 2022

[This page is intentionally left blank]

Prepared by:

Hydro One Networks Inc. (Lead Transmitter)

With support from:

Company
Independent Electricity System Operator (IESO)
Alectra Utilities Corporation (Alectra)
Hydro One Networks Inc. (Distribution)
InnPower
Orangeville Hydro
Elexicon Energy
Lakeland Power
Epcor Electricity Distribution Ontario Inc
Newmarket-Tay Power Distribution Ltd
Wasaga Distribution Inc.

Disclaimer

This Regional Infrastructure Plan ("RIP") report was prepared for the purpose of developing an electricity infrastructure plan to address electrical supply needs identified in previous planning phases and also any additional needs identified based on new and/or updated information provided by the RIP Technical Working Group.

The preferred solution(s) that have been identified in this report may be reevaluated based on the findings of further analysis. The load forecast and results reported in this RIP report are based on the information provided and assumptions made by the participants of the RIP Technical Working Group.

Technical Working Group participants, their respective affiliated organizations, and Hydro One Networks Inc. (collectively, "the Authors") make no representations or warranties (express, implied, statutory or otherwise) as to the RIP report or its contents, including, without limitation, the accuracy or completeness of the information therein and shall not, under any circumstances whatsoever, be liable to each other, or to any third party for whom the RIP report was prepared ("the Intended Third Parties"), or to any other third party reading or receiving the RIP report ("the Other Third Parties"), for any direct, indirect or consequential loss or damages or for any punitive, incidental or special damages or any loss of profit, loss of contract, loss of opportunity or loss of goodwill resulting from or in any way related to the reliance on, acceptance or use of the RIP report or its contents by any person or entity, including, but not limited to, the aforementioned persons and entities.

EXECUTIVE SUMMARY

THIS REGIONAL INFRASTRUCTURE PLAN ("RIP") WAS PREPARED BY HYDRO ONE WITH SUPPORT FROM THE TECHNICAL WORKING GROUP IN ACCORDANCE WITH THE ONTARIO TRANSMISSION SYSTEM CODE REQUIREMENTS. IT IDENTIFIES INVESTMENTS IN TRANSMISSION FACILITIES, DISTRIBUTION FACILITIES, OR BOTH, THAT SHOULD BE DEVELOPED AND IMPLEMENTED TO MEET THE ELECTRICITY INFRASTRUCTURE NEEDS WITHIN THE SOUTH GEORGIAN BAY-MUSKOKA REGION.

The participants of the South Georgian Bay-Muskoka Regional Infrastructure Plan ("RIP") Technical Working Group ("TWG") included members from the following organizations:

- Independent Electricity System Operator ("IESO")
- Alectra Utilities Corporation ("Alectra")
- Hydro One Networks Inc. (Distribution)
- Hydro One Networks Inc. (Transmission)
- InnPower
- Orangevile Hydro
- Lakeland Power
- EPCOR Electricity Distribution Ontario Inc.
- Newmarket-Tay Power Distribution Ltd.
- Wasaga Distribution Inc.

This RIP is the final phase of the second cycle of the South Georgian Bay-Muskoka Regional Planning (RP) process. It follows the completion of the South Georgian Bay-Muskoka Integrated Regional Resource Plan ("IRRP") which was subdivided into two sub-regions; Barrie Innisfil and Parry Sound/Muskoka both completed in May 2022. This also follows completion of the South Georgian Bay-Muskoka Needs Assessment ("NA") and Scoping Assessment ("SA") in April 2020 and November 2020, respectively.

The South Georgian Bay-Muskoka RIP provides a consolidated summary of needs and recommended plans for the region over a 10-year planning horizon (2022-2032) based on available information. The load forecast for the 2033-2042 period is provided to show the longer term needs and trend. All needs for this long-term horizon will be reviewed again and confirmed in future regional planning cycles.

The first cycle of Regional Planning process was completed in August 2017 with the publication of the South Georgian Bay-Muskoka RIP report, which provided a description of needs and recommendations of preferred wires plans to address near-term needs.

I. Update on the needs identified during the previous regional planning cycle

The following needs and projects identified in the previous regional planning cycle have been completed:

- Orillia TS M6E/M7E Switches (2021) Hydro One installed new 230kV motorized disconnect switches on the M6E and M7E circuits (at Orillia TS) to improve load restoration time.
- Minden TS (2021) Replacement of end-of-life (EOL) 230/44kV 42MVA (T1/T2) transformers with new 230/44kV 83MVA units.

The following needs and projects identified in the previous regional planning cycle are currently underway:

- Parry Sound TS (2023) Replace existing 230/44kV 42MVA transformers (T1/T2) with new 230/44kV 83MVA units and replace station protection and station service equipment.
- Barrie TS (2023) Replace and upgrade existing 115/44kV 83MVA transformers (T1/T2) with new 230kV/44kV 125MVA transformers. Remove Essa TS T1/T2 autotransformers and convert Barrie TS supply circuits (E3B/E4B) from 115kV to 230kV.
- Orangeville TS (2023)- Replace existing T1/T2 230/44/27.6 kV 75/125 MVA transformers with two 230/27.6 kV 50/83 MVA units and reconfigure the dual voltage switchyard to a standard DESN that would supply the 27.6 kV load. Also replace and upgrade T3/T4 230/44 kV 50/83 MVA transformers with two 230/44 kV 75/125 MVA units to accommodate additional capacity.

II. Newely Identified needs:

The major infrastructure investments in this 2nd cycle recommended by the TWG in the South Georgian Bay-Muskoka Region over the near and medium-term (2022-2032) period are given in Table 1 below, along with their planned in-service date and budgetary estimate for planning purposes.

Need Station / Circuit		Investment Description	Lead	Planned In- Service Date ¹	Cost (\$M) ²
	Everett TS	Modify current transformer (CT) ratio setting the low voltage 44kV transformer breakers	HONI	2023	0.5
Station Capacity	Barrie TS	Construct new 230/27.6kV 83MVA transformer station and connect to 230kV E28B/E29B circuits	HONI / Inn Power	2027	44
	Waubaushene TS	Replace and upgrade existing 230/44kV 83MVA transformers (T5/T6) with new 230/44kV 125MVA units.	HONI / Hydro One Dx	2027	20
	M6E / M7E (Orillia TS x Coopers Fls)	Replace end- f-life (EOL) transmission line conductor (25km)	HONI	2026	30
Asset Renewal - Transmission Line	E8V / E9V (Orangeville TS x Essa JCT)	Replace EOL transmission line conductor and associated assets (56km)	HONI	2027	70
	D1M / D2M (Minden TS x Otter Creek JCT)	Replace EOL transmission line conductor and associated assets (62 km)	HONI	2028	70
	Wallace TS	Replace existing EOL 230/44kV 42MVA transformers (T3/T4) with new 230/44kV 42MVA units	HONI	2025	25
	Midhurst TS	Replace existing 230/44kV 125MVA EOL transformer (T4) with a new 230/44kV 125MVA unit	HONI	2026	12
Asset Renewal - Transmission Station	Orillia TS	Replace existing EOL 230/44kV 125MVA transformer (T2) with new 230/44kV 125MVA unit	HONI	2025	12
	Bracebridge TS	Replace existing EOL 230/44kV 83MVA transformer (T1) with new 230/44kV 83MVA unit	HONI	2026	10
	Alliston TS	Replace existing EOL 230/44kV 83MVA transformer (T3/T4) with new 230/44kV 83MVA units	HONI	2030	16

Table 1. South Georgian Bay-Muskoka Region - Recommended Plans over the 2022-2032 Study Period

The South Georgian Bay-Muskoka TWG recommends that Hydro One and LDCs continue with the implementation of infrastructure investments listed in Table 1 while keeping the TWG apprised of project status.

¹ Planned in-service dates are tentative and subject to change

² Costs are based on budgetary planning estimates and excludes the cost for distribution infrastructure (if required).

The next regional planning cycle for the South Georgian Bay-Muskoka Region must be triggered within five years, beginning with the Needs Assessment ("NA") phase. It is expected that the next NA will start in Q2 2025. However, the next regional planning cycle can be started earlier if required to address any emerging needs.

[This page is intentionally left blank]

[This page is intentionally left blank]

TABLE OF CONTENTS

Exe	ecutive Summary	5
Tal	ble of Contents	.10
Lis	t of Figures	.11
Lis	t of Tables	.11
1.	Introduction	.12
	1.1 Objectives and Scope	.14
	1.2 Structure	.14
2.	Regional Planning Process	.15
	2.1 Overview	.15
	2.2 Regional Planning Process	.15
	2.3 RIP Methodology	
3.	Regional Characteristics	
4.	Transmission Facilities Completed in the Last Ten Years and/or Underway	
5.	Forecast and Study Assumptions	
	5.1 Load Forecast	
	5.2 Other Study Assumptions	
6.	Adequacy of Existing Facilities and Regional Needs	
	6.1 500 kV and 230 kV Transmission Facilities	
	6.1.1 500/230 kV Transformation Facilities	
	6.1.2 230 & 115 kV Transmission Circuits	
	6.2 Step-Down Transformation Facilities	
	6.3 Asset Renewal for Major HV Transmission Equipment	
	6.4 Load Security and Load Restoration	
7.	Regional Plans	
	7.1 Station Capacity Needs	
	7.1.1 Everett TS	
	7.1.2 Barrie TS	
	7.1.3 Waubaushene TS	
	7.1.4 Midhurst TS and Minden TS	
	7.2 Supply Capacity Needs	
	7.3 Asset Renewal Needs for Major HV Transmission Equipment	
	7.3.1 Transmission Line Refurbishment	
	7.3.2 Transmission Station Refurbishment	
	7.4 Load Security / Restoration	
_	7.5 Long Term Considerations	
8.	Conclusion and next steps	
9.	References	
-	pendix A. South Georgian Bay-Muskoka Region - Stations	
-	pendix B. South Georgian Bay-Muskoka Region - Transmission Lines	
Ap	pendix C. South Georgian Bay-Muskoka Region - Distributors	.44

Appendix D.	South Georgian Bay-Muskoka Region - Stations Load Forecast	-5
Appendix E.	List of Acronyms	7

LIST OF FIGURES

Figure 1-1 South Georgian Bay-Muskoka Region Map	. 13
Figure 2-1 Regional Planning Process Flowchart	.17
Figure 2-2 RIP Methodology	. 19
Figure 3-1 South Georgian Bay-Muskoka Region Single Line Diagram	.21
Figure 5-1 South Georgian Bay-Muskoka Region Non-Coincident Net Summer Peak Load Forecast	.23
Figure 5-2 South Georgian Bay-Muskoka Region Non-Coincident Net Winter Peak Load Forecast	.24

LIST OF TABLES

Table 6-1 South Georgian Bay-Muskoka Region - Lines Sections Exceeding ratings	26
Table 6-2 South Georgian Bay-Muskoka Region - Step-Down Transformer Stations	
Table 6-3 South Georgian Bay-Muskoka Region - Stations Requiring Relief in the study period	l (2022-
2032)	27
Table 6-4 South Georgian Bay-Muskoka Region - Planned Replacement Work	
Table 7-1 South Georgian Bay-Muskoka Region - Near, Medium and Long Term Needs	
Table 7-2 Everett TS Load Forecast	
Table 7-3 Barrie TS Load Forecast	
Table 7-4 Waubaushene TS Load Forecast	
Table 7-5 Alliston TS Load Forecast	
Table 7-6 Station Asset Replacement Plans	
Table 8-1 Recommended Plans in Region over the Next 10 Years	

1. INTRODUCTION

THIS REPORT PRESENTS THE REGIONAL INFRASTRUCTURE PLAN ("RIP") TO ADDRESS THE ELECTRICITY NEEDS OF THE SOUTH GEORGIAN BAY-MUSKOKA REGION.

The report was prepared by Hydro One Networks Inc. (Transmission) ("Hydro One") on behalf of the Technical Working Group ("TWG") in accordance with the regional planning process established by the Ontario Energy Board ("OEB") in 2013. The TWG included members from the following organizations:

- Independent Electricity System Operator ("IESO")
- Alectra Utilities Corporation ("Alectra")
- Hydro One Networks Inc. (Distribution)
- Hydro One Networks Inc. (Transmission)
- InnPower
- Orangeville Hydro
- Lakeland Power
- EPCOR Electricity Distribution Ontario Inc.
- Newmarket-Tay Power Distribution Ltd.
- Wasaga Distribution Inc.

Electrical supply to the South Georgian Bay-Muskoka region is provided through two (2) 500/230kV auto-transformers at Essa TS, the 230kV transmission lines connecting Minden TS to Des Joachims TS, the 230kV circuits E8V and E9V coming from Orangeville TS, and the single 115kV circuit S2S connecting to Owen Sound TS. There are sixteen (16) Hydro One step-down transformer stations in the region, most of which are supplied by circuits radiating out from Essa TS, and the majority of the distribution system is at 44kV, except for Orangeville TS which has 27.6kV and 44kV feeders. Figure 1-1 represents the South Georgian Bay-Muskoka Region Map.

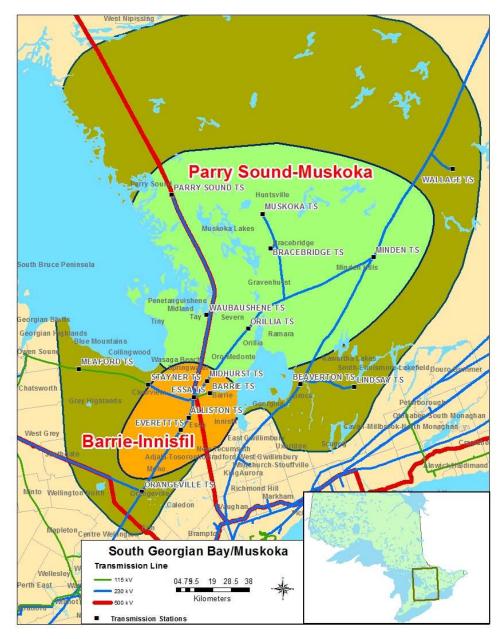


Figure 1-1 South Georgian Bay-Muskoka Region Map

1.1 Objectives and Scope

This RIP report examines the needs in the South Georgian Bay-Muskoka Region. Its objectives are to:

- Provide a comprehensive summary of needs and wires plans to address the needs for the region.
- Identify new supply needs that may have emerged since previous planning phases (e.g., Needs Assessment, Scoping Assessment, Local Plan, and/or Integrated Regional Resource Plan).
- Assess and develop wires plans to address these new needs.
- Identify investments in transmission and distribution facilities or both that should be developed and implemented on a coordinated basis to meet the electricity infrastructure needs within the region.

The RIP reviewed factors such as the load forecast, asset renewal for major high voltage transmission equipment, transmission and distribution system capability along with any updates with respect to local plans, conservation and demand management ("CDM"), renewable and non-renewable generation development, and other electricity system and local drivers that may impact the need and alternatives under consideration.

The scope of this RIP is as follows:

- A consolidated report of the needs and relevant wires plans to address near and medium-term needs (2022-2032) identified in previous planning phases (i.e., Needs Assessment, Scoping Assessment, Local Plan, or Integrated Regional Resource Plan).
- Identification of any new needs over the 2022-2032 period and wires plans to address these needs based on new and/or updated information.
- Consideration of long-term needs identified in the South Georgian Bay-Muskoka IRRP or identified by the TWG.

1.2 Structure

The rest of the report is organized as follows:

- Section 2 provides an overview of the regional planning process;
- Section 3 describes the regional characteristics;
- Section 4 describes the transmission work completed over the last ten years;
- Section 5 describes the load forecast and study assumptions used in this assessment;
- Section 6 describes the results of the adequacy assessment of the transmission facilities in the region over the study period and identifies the needs;
- Section 7 discusses the needs, provides alternatives to address each need, and recommends a preferred solutions; and,
- Section 8 provides the conclusion and next steps.

2. REGIONAL PLANNING PROCESS

2.1 Overview

Planning for the electricity system in Ontario is done at essentially three levels: bulk system planning, regional system planning, and distribution system planning. These levels differ in the facilities that are considered and the scope of impact on the electricity system. Planning at the bulk system level typically looks at issues that impact the system on a provincial level, while planning at the regional and distribution levels looks at issues on a more regional or localized level.

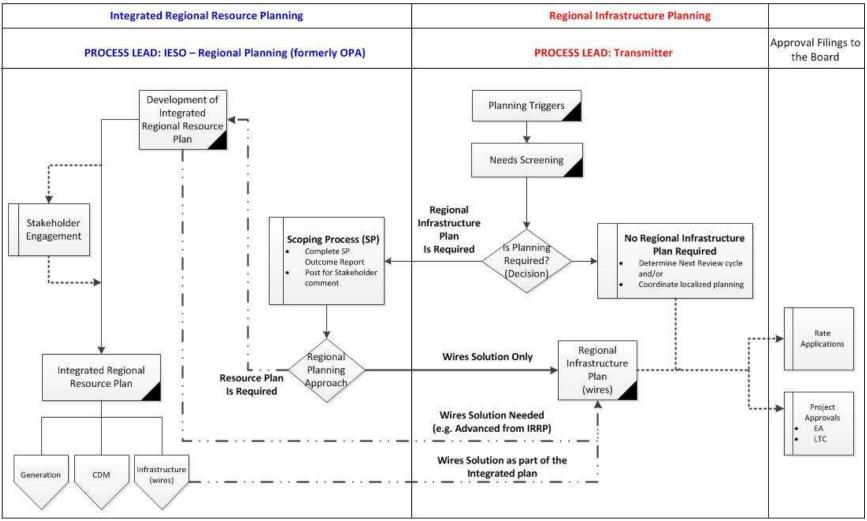
Regional planning looks at supply and reliability issues at a regional or local area level. Therefore, it largely considers the 115 kV and 230 kV portions of the power system that supply various parts of the province.

2.2 Regional Planning Process

A structured regional planning process was established by the Ontario Energy Board in 2013 through amendments to the Transmission System Code ("TSC") and Distribution System Code ("DSC"). The process consists of four phases: The Needs Assessment ("NA"), the Scoping Assessment ("SA"), the Integrated Regional Resource Plan ("IRRP"), and the Regional Infrastructure Plan ("RIP").

The regional planning process begins with the NA phase which is led by the transmitter to determine if there are regional needs. The NA phase identifies the needs and the Technical Working Group (TWG) determines whether further regional coordination is necessary to address them. If no further regional coordination is required to address the need(s), further planning is undertaken by the transmitter and the impacted local distribution company ("LDC") or customer to develop a Local Plan ("LP") to address them. These needs are local in nature and can be best addressed by a straightforward wires solution. The TWG considers various factors in determining that a LP is the appropriate planning approach.

In situations where identified needs require further coordination at the regional or sub-regional levels, the IESO initiates the SA phase. During this phase, the IESO, in collaboration with the TWG, reviews the information collected as part of the NA phase, along with additional information on potential non-wires alternatives, and decides on the most appropriate regional planning approach. The approach is either a RIP, which is led by the transmitter, or an IRRP, which is led by the IESO. If more than one sub-region was identified in the NA phase, it is possible that a different approach could be taken for different sub-regions.


The IRRP phase will generally assess infrastructure (wires) versus resource (CDM and Distributed Generation) options at a higher or more macro level, but sufficient to permit a comparison of options. If the IRRP phase identifies that infrastructure options may be most appropriate to meet a need, the RIP phase will conduct detailed planning to identify and assess the specific wires alternatives and recommend a preferred wires solution. Similarly, resource options which the IRRP phase also includes IESO led stakeholder engagement with municipalities, Indigenous communities, business sectors and other interested stakeholders and establishes a Local Advisory Committee (LAC) in the region or sub-region.

The RIP phase is the final phase of the regional planning process and involves: discussion of previously identified needs and plans; identification of any new needs that may have emerged since the start of the planning cycle; and, development of a wires plan to address these needs. This phase is led and coordinated by the transmitter and the deliverable is a comprehensive and consolidated report of a wires plan for the region. Once completed, this report is also referenced in transmitter's rate filing submissions and as part of LDC rate applications with a planning status letter provided by the transmitter to the LDC(s). Respecting the OEB timeline provision of the RIP, planning level stakeholder engagement is not undertaken during this phase. However, stakeholder engagement at a project specific level will be conducted as part of the project approval requirement.

To efficiently manage the regional planning process, Hydro One has been undertaking wires planning activities in collaboration with the IESO and LDCs for the region as part of and/or in parallel with:

- Planning activities that were already underway in the region prior to the regional planning process taking effect.
- The NA, SA, IRRP and LP phases of regional planning.
- Conducting wires planning as part of the RIP for the region or sub-region.
- Planning for connection capacity requirements with the LDCs and transmission connected customers.

Figure 2 -1 illustrates the various phases of the regional planning process (NA, SA, IRRP, and RIP) and their respective phase trigger, lead, and outcome.

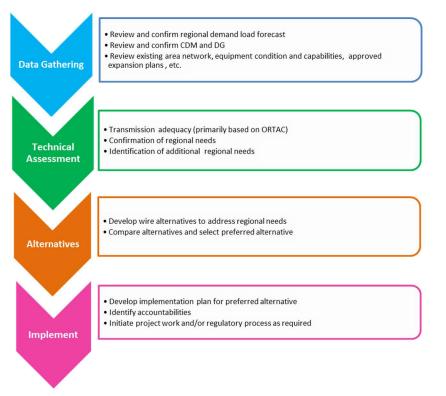


Figure 2-1 Regional Planning Process Flowchart

2.3 RIP Methodology

The RIP phase consists of a four step process (see Figure 2-2) as follows:

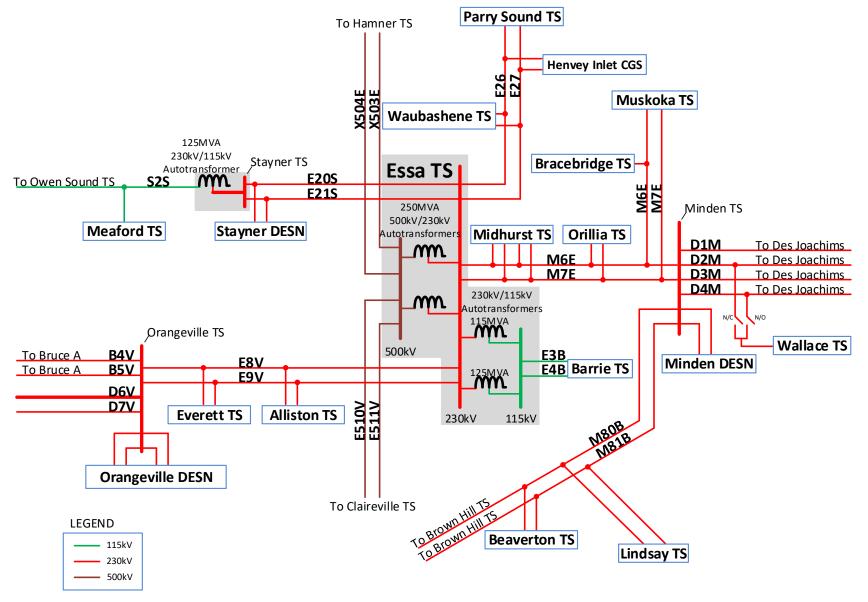
- 1. Data Gathering: The first step of the RIP process is the review of planning assessment data collected in the previous stages of the regional planning process. Hydro One collects this information and reviews it with the technical working group (TWG) to reconfirm or update the information as required. The data collected includes:
 - Net peak demand forecast at the transformer station level. This includes the effect of any distributed generation or conservation and demand management programs. As agreed by TWG members, the load forecast from the IRRP was used for this RIP.
 - Existing area network and capabilities including any bulk system power flow assumptions.
 - Other data and assumptions as applicable such as asset condition, load transfer capabilities, and previously committed transmission and distribution system plans.
- 2. Technical Assessment: The second step is a technical assessment to review the adequacy of the regional system including any previously identified needs. Additional near and medium-term needs may be identified at this stage.
- 3. Alternative Development: The third step is the development of wires options to address the needs and determine a preferred alternative based on an assessment of technical considerations, feasibility, environmental impact, and costs.
- 4. Implementation Plan: The fourth and last step is the development of the implementation plan for the preferred alternative.

3. REGIONAL CHARACTERISTICS

THE SOUTH GEORGIAN BAY/MUSKOKA REGION IS COMPRISED OF THE BARRIE/INNISFIL AND THE PARRY SOUND/MUSKOKA SUB-REGIONS. ELECTRICAL SUPPLY TO THE REGION IS PROVIDED FROM TWO AUTO-TRANSFORMERS AT ESSA TS, THE 230KV TRANSMISSION LINES D1M, D2M, D3M AND D4M CONNECTING MINDEN TS TO DES JOACHIMS TS, THE 230KV CIRCUITS E8V AND E9V COMING FROM ORANGEVILLE TS AND THE SINGLE 115KV CIRCUIT S2S CONNECTING TO OWEN SOUND TS.

The existing facilities in the Region are summarized below and depicted in the single line diagram shown in Figure 3-1. The 500kV system is part of the bulk power system and is not studied as part of this report.

There are sixteen (16) HONI step-down transformer stations in the Region, most of which are supplied by circuits radiating out from Essa TS, and the majority of the distribution system is at 44kV, except for Orangeville TS which has 27.6kV and 44kV feeders.


The April 2020 South Georgian Bay/Muskoka Region second cycle NA report, prepared by Hydro One, considered the South Georgian Bay/Muskoka as a whole. Subsequently as a result of the Scoping Assessment, the South Georgian Bay/Muskoka Region was divided into two sub-regions, Barrie/Innisfil Sub-Region and Parry Sound-Muskoka Sub-Region.

The Barrie/Innisfil Sub-Region roughly encompasses the City of Barrie and the towns of Innisfil, New Tecumseth and Bradford West Gwillimbury. It includes the townships of Essa, Springwater, Clearview and Mulmur, Adjala-Tosorontio. The Barrie/Innisfil Sub-Region includes the areas supplied by Midhurst TS, Barrie TS, Everett TS, and Alliston TS, and transmission circuits E8V/E9V, E3B/E4B, and M6E/M7E.

This Parry Sound/Muskoka sub-region roughly encompasses the Districts of Muskoka and Parry Sound, and the northern part of Simcoe County. The Parry Sound/Muskoka Sub-Region includes the areas supplied by Parry Sound TS, Waubaushene TS, Orillia TS, Bracebridge TS, Muskoka TS, Minden TS, and transmission circuits M6E/M7E and E26/E27.

The following circuits are not included in the South Georgian Bay/Muskoka Region:

- The 230kV circuits, B4V and B5V, and all stations which they supply. These circuits and stations are included in the Greater Bruce/Huron Region.
- The 230kV circuits, D6V and D7V, and all stations which they supply. These circuits and stations are included in the Kitchener/Waterloo/Cambridge/Guelph Region.

Note: BATU project will convert E3B/E4B to 230kV and connect Barrie TS directly to Essa TS 230kV bus (In-Service 2023)

Figure 3-1 South Georgian Bay-Muskoka Region Single Line Diagram

4. TRANSMISSION FACILITIES COMPLETED IN THE LAST TEN YEARS AND/OR UNDERWAY

OVER THE LAST TEN YEARS A NUMBER OF TRANSMISSION PROJECTS HAVE BEEN COMPLETED BY HYDRO ONE, OR ARE CURRENTLY UNDERWAY, AIMED AT IMPROVING THE SUPPLY CAPABILITY AND RELIABILITY IN THE SOUTH GEORGIAN BAY-MUSKOKA REGION.

A summary and brief description of the major projects completed and/or currently underway over the last ten years is provided below:

• Midhurst TS and Orillia TS Capacitor Banks (2012) – Installation of four (4) 44kV, 32.4 MVAr capacitor banks at Midhurst TS and Orillia TS (two banks at each station) to minimize post-contingency voltage decline on the low voltage buses at both stations and defer the overload on circuit M6E.

Meaford TS Transformer Replacement (2015) – The 115/44 kV, 25/42 MVA T1/T2 transformers were at end-of-life (EOL) and replaced like-for-like.

- Orillia TS M6E/M7E Switches (2021) Loss of M6E and M7E resulted in violation of ORTAC load restoration criteria based on the peak load forecast. Hydro One installed new 230kV motorized disconnect switches on the M6E and M7E circuits (at Orillia TS) to improve load restoration time.
- Minden TS Transformer Replacement (2021) The 230/44kV, 42MVA T1/T2 transformers were at EOL and replaced with new 230/44kV 83MVA units.

The following projects are underway:

- Barrie TS (2023) This investment will convert the existing 115kV E3B/E4B circuits to 230kV and connect directly to the Essa 230kV bus. Barrie TS will be rebuilt with new 230/44kV 75/125MVA transformers and connect to the new 230kV E28/E29B circuits. The 230/115kV autotransformers at Essa TS will also be removed as part of this investment.
- Orangeville (2023) Based on asset condition assessment the existing T3/T4 230/44kV 83MVA transformers will be replaced with new 125MVA units and also, the existing nonstandard three winding 230/44/27.6 125MVA transformers (T1/T2) be replaced with new dual winding 230/27.6, 83MVA units. This investment also involves reconfiguration of low voltage equipment and transfering existing 44kV feeders from T1/T2 DESN to the T3/T4 DESN.
- Parry Sound TS (2023) Parry Sound TS transformer supply capacity has been exceeded, and transformers have also been assessed at being end of life and in need of replacement due to their asset conditions. Hydro One will be installing new 230/44kV 83MVA transformers units to address both end of life and capacity needs at this station.

5. FORECAST AND STUDY ASSUMPTIONS

5.1 Load Forecast

During the study period, the load in the South Georgian Bay-Muskoka Region is expected to grow at an average annual rate of approximately 2% (summer) and 1.8% (winter) from 2022 to 2032.

Figure 5-1 shows the South Georgian Bay-Muskoka Region extreme summer weather net load forecast from 2022 to 2042. The load forecasts from the Barrie Innisfil sub-region IRRP and Parry Sound/Muskoka sub-region IRRP were adopted as agreed to by the TWG. The load forecast shown is the regional non-coincident forecast, representing the sum of the load in the area for the step-down transformer stations.

Non-coincident forecast for the individual stations in the region is available in Appendix D and is used to determine any need for station capacity relief.

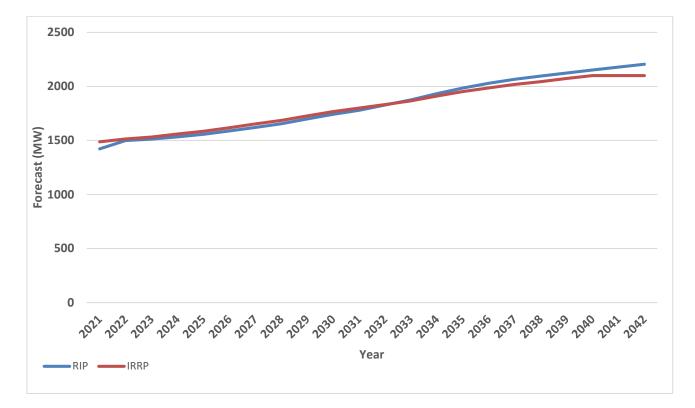


Figure 5-1 South Georgian Bay-Muskoka Region Non–Coincident Net Summer Peak Load Forecast

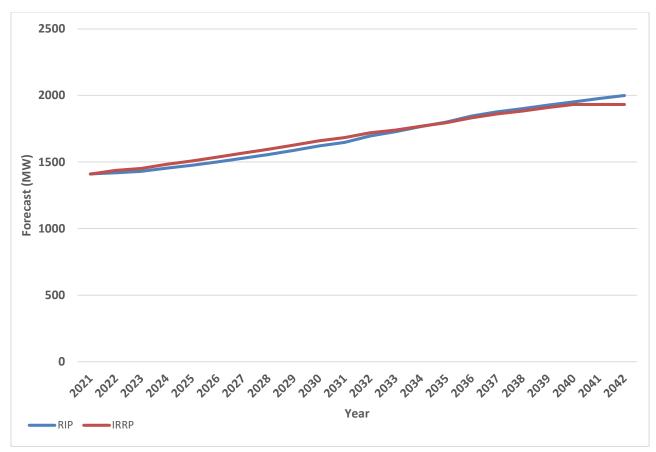


Figure 5-2 South Georgian Bay-Muskoka Region Non-Coincident Net Winter Peak Load Forecast

5.2 Other Study Assumptions

The following other assumptions are made in this report.

- The study period for the RIP assessments is 2022-2032. However, a longer term forecast up to 2042 is provided to identify long-term needs and align with the IESO's Barrie Innisfil sub-region and Parry Sound/Muskoka sub-region IRRPs.
- LDCs reconfirmed load forecasts up to 2040. The additional two years of forecasts were extrapolated based on growth rate as a reasonable position to complete the 20 years period.
- All planned facilities for which work has been initiated and are listed in section 4 are assumed to be inservice.
- Both summer and winter loads were considered to assess line and transformer loadings.
- Station capacity adequacy is assessed by comparing the non-coincident peak load with the station's normal planning supply capacity, assuming a 90% lagging power factor for stations having no low-voltage capacitor banks and 95% lagging power factor for stations having low-voltage capacitor banks, or on the basis of historical power factor data.
- Normal planning supply capacity for transformer stations in the region is determined by the summer 10day Limited Time Rating (LTR).
- Bulk transmission line capacity adequacy is assessed by using coincident peak loads in the area. Capacity assessment for radial lines and stepdown transformer stations use non-coincident peak loads.
- Adequacy assessment is conducted as per ORTAC.

6. ADEQUACY OF EXISTING FACILITIES AND REGIONAL NEEDS

THIS SECTION REVIEWS THE ADEQUACY OF THE EXISTING TRANSMISSION SYSTEM AND TRANSFORMER STATION FACILITIES SUPPLYING THE SOUTH GEORGIAN BAY-MUSKOKA REGION AND LISTS THE FACILITIES REQUIRING REINFORCEMENT OVER THE NEAR AND MID-TERM PERIOD.

Within the current regional planning cycle, four regional assessments have been conducted for the South Georgian Bay-Muskoka Region. The findings of these assessments are inputs to this RIP. These assessments are:

- 1) South Georgian Bay-Muskoka Region second cycle Needs Assessment (NA) Report, April 2020
- 2) South Georgian Bay/Muskoka second cycle Scoping Assessment Outcome Report, November 2020
- 3) Barrie/Innisfil sub-region second cycle Integrated Regional Resource Planning (IRRP), May 2022
- 4) Parry Sound/Muskoka sub-region second cycle Integrated Regional Resource Planning (IRRP), May 2022

The NA and IRRP reports identified several regional needs based on the forecasted load demand over the near to mid-term period. A detailed description and status of plans to meet these needs is given in Section 7.

This section provides a review of the adequacy of the transmission lines and stations in the South Georgian Bay/Muskoka Region. The adequacy is assessed using the load forecasts provided in Appendices D. The assessment assumes all projects currently underway (described in section 4) are in-service and specifically, the Barrie Area Transmission Reinforcement project and Orangeville/Parry Sound transformer replacements are inservice by 2023.

Sections 6.1- 6.3 present the results of the adequacy assessment and Table 6-1 lists the region's near, mid, and long-term needs identified in both the IRRP and RIP phases.

6.1 500 kV and 230 kV Transmission Facilities

All 500 kV and 230 kV transmission circuits in the South Georgian Bay-Muskoka Region are classified as part of the Bulk Electricity System ("BES"). They connect the Region to the rest of Ontario's transmission system. The 230 kV circuits also serve local area stations within the region and the power flow on these circuits vary depending on the bulk system transfers as well as the local area loads.

6.1.1 500/230 kV Transformation Facilities

Bulk power supply to the South Georgian Bay-Muskoka Region is provided by 500/230 kV autotransformers at Essa TS which serves as a hub for major power flows between Hanmer TS (Sudbury) and Clairville TS (Toronto). Additional support for the region is provided from the 230 kV generation facilities (Des Joachims GS, Henvey Inlet CGS)

6.1.2 230 & 115 kV Transmission Circuits

The 230kV circuits in the region are as follows;

- E20S/E21S (Essa TS x Stayner TS)
- E26/E27 (Essa TS x Parry Sound TS)
- M6E/M7E (Essa TS x Minden TS)
- D1M/D2M/D3M/D4M (Minden TS x Des Joachims)
- 115 kV S2S (Stayner TS x Owen Sound TS)

Table 6-1 below highlights the line section(s) and violations identified in the IRRP and reaffirmed in this RIP.

No.	Line	Section	Contingency	Year Line Rating exceeded
1	M6E/M7E	Essa TS x Midhurst TS	N-1 ¹	2034
2	M6E	Minden x Coopers Fls JCT	N-1 ²	2038
3	M6E	Minden x Coopers Fls JCT	N-1-1 ³	2040

 Table 6-1 South Georgian Bay-Muskoka Region - Lines Sections Exceeding ratings

¹Loss of one of either M6E or M7E will result in overload of the companion circuit.

² Minden TS HL7 breaker fail.

³ M7E O/S followed by loss of Essa TS T3

The options and preferred solutions to address these needs are discussed further in Section 7 of the report.

6.2 Step-Down Transformation Facilities

There are sixteen (16) step-down transformer stations in the South Georgian Bay-Muskoka Region as listed in Table 6-2.

Alliston TS	Everett TS	Minden TS	Parry Sound TS
Barrie TS	Lindsay TS	Muskoka TS	Stayner TS
Beaverton TS	Meaford TS	Orangeville TS	Wallace TS
Bracebridge TS	Midhurst TS	Orillia TS	Waubaushene TS

This RIP reviewed the step-down transformation capacity for the stations within the South Georgian Bay-Muskoka Region. The NA and IRRP studies had previously indicated that the following stations require capacity relief within the study period. This RIP has further confirmed those needs and based on the load forecast, the stations which require capacity relief during the 2022-2032 study period are shown in Table 6-3 below. The need timeframe defines the time when the peak load forecast exceeds the most limiting seasonal (summer or winter) 10-day LTR.

Station	Capacity (MW)	2022 Loading (MW)	Need Date	
Everett TS	86	85	Immediate	
Barrie TS	162 ³	98	2027	
Waubaushene TS	94	90	2027	

Table 6-3 South Georgian Bay-Muskoka Region - Stations Requiring Relief in the study period (2022-2032)

Further, based on the load forecast, the stations requiring relief beyond the study period are listed below:

- Midhurst TS (T1/T2) 2033
- Midhurst TS (T3/T4) 2034

6.3 Asset Renewal for Major HV Transmission Equipment

A number of Hydro One facilities in the South Georgian Bay-Muskoka Region will require replacement over the 2022-2032 study period as listed in Table 6-4 below.

Asset renewal needs are determined by asset condition assessment. Asset condition assessment is based on a range of considerations such as (but not limited to):

- Equipment deterioration;
- Technical obsolescence due to outdated design;
- Lack of spare parts availability or manufacturer support; and/or,
- Potential health and safety hazards, etc.

The major high voltage equipment considered includes the following:

- 1. 230/115kV autotransformers;
- 2. 230 and 115kV load serving step-down transformers;
- 3. 230 and 115kV breakers where:
 - replacement of six breakers or more than 50% of station breakers, the lesser of the two
- 4. 230 and 115kV transmission lines requiring refurbishment where:
 - Leave to Construct (i.e., section 92) approval is required for any alternative to like-for-like
- 5. 230 and 115kV underground cable requiring replacement where:
 - Leave to Construct (i.e., section 92) approval is required for any alternative to like-for-like

³ After completion of the BATU project

No.	Station / Line Section	Planned In-Service Date*
	In Execution/Construction	
1	Barrie TS (T1/T2)	2023
2	Orangeville TS (T1/T2 & T3/T4)	2023
3	Parry Sound TS (T1/T2)	2023
	In Development	
4	Wallace TS (T3/T4)	2025
5	Midhurst TS (T4)	2026
6	Orillia TS (T2)	2025
7	Bracebridge TS (T1)	2026
8	Waubaushene TS T5/T6	2027
9	Alliston TS (T3/T4)	2030
10	M6E/M7E – Cooper Falls Jct x Orillia TS	2026
11	E8V/E9V – Orangeville TS x Essa Jct	2027
12	D1M/D2M – Otter Creek Jct x Minden TS	2028

 Table 6-4 South Georgian Bay-Muskoka Region - Planned Replacement Work

*The planned in-service dates are tentative and subject to change.

6.4 Load Security and Load Restoration

Load security and load restoration needs were reviewed as part of the current study. The ORTAC Section 7 requires that no more than 600 MW of load be lost as a result of a double circuit contingency.

Further, loads are to be restored in the restoration times⁴ specified as follows:

- All loads must be restored within 8 hours.
- Load interrupted in excess of 150 MW must be restored within 4 hours.
- Load interruped in excess of 250 MW must be restored within 30 minutes.

This RIP further confirms there are no identified load security and restoration violations within the study period. The technical working group does not recommend any further action.

⁴ These approximate restoration times are intended for locations that are near staffed centres. In more remote locations, restoration times should be commensurate with travel times and accessibility

7. REGIONAL PLANS

THIS SECTION DISCUSSES NEEDS, PRESENTS WIRES ALTERNATIVES AND THE PREFERRED WIRES SOLUTIONS FOR ADDRESSING THE ELECTRICAL SUPPLY NEEDS FOR THE SOUTH GEORGIAN BAY-MUSKOKA REGION.

The electrical infrastructure needs for the South Georgian Bay-Muskoka Region are summarized in Table 7-1. These needs include those previously identified in the NA for the South Georgian Bay-Muskoka Region and IRRPs for the Barrie/Innisfil and the Parry Sound/Muskoka Sub-Regions as well as any new needs identified during the RIP phase. All estimated costs included in the altorative analysis are considered as planning budgetary estimates and are used for comparative purposes only.

Туре	Section	Needs	Timing
		Everett TS	
		Barrie TS	2027
Station Capacity	7.1	Waubaushene	2027
		Midhurst TS	2033/2034
		Minden TS	2036
Supply Capacity	7.2	M6E/M7E (Essa x Midhurst)	2034
Suppry Capacity	1.2	M6E/M7E (Minden x Coopers Fls)	2038
	M6E/M7E (Orillia x Coopers Fls)7.3.1E8V/E9V (Orangeville TS x Essa Jct)D1M/D2M (Otter Creek Jct x Minden TS)	M6E/M7E (Orillia x Coopers Fls)	2026
			2027
		2028	
Asset Renewal for Major HV		Wallace TS (T3/T4)	2025
Transmission Equipment		Midhurst TS (T4)	2026
	Orillia TS (T2)	Orillia TS (T2)	2025
	7.3.2	Bracebridge TS (T1)	2026
		Waubaushene TS (T5/T6)	2027
		Alliston TS (T3/T4)	2030
Load Security/Restoration	7.4	None Identified in this planning cycle	-

Table 7-1 South Georgian Bay-Muskoka Region – Near, Medium and Long Term Needs

7.1 Station Capacity Needs

7.1.1 Everett TS

Everett TS is 230/44kV 50/83MVA transformer station with a summer and winter 10-Day LTR of 86MW. Load at this station is forecasted to increase up to 105MW by the end of 2032. Supply capacity is presently limited by a current transformer (CT) ratio setting on the transformer breaker bushing, thereby restricting the ability to utilize the full supply capability of the transformers.

Station	LTR						Load I	Forecas	t			
Station	(MW)	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Everett TS	86	85	86	87	88	90	92	93	95	97	100	105

Table 7-2 Everett TS Load Forecast

The following alternatives were considered to address Everett TS capacity need:

Alternative 1 - Maintain Status Quo: This alternative was considered and rejected as it does not provide supply capacity to area customers during the study period. Under this scenario load cannot be increased at this station.

Alternative 2 – Replace and upgrade T1/T2 with new 75/125MVA units: Under this alternative the existing T1/T2 transformers will be replaced with new 75/125MVA transformers. This was considered and rejected as this would result in additional cost of approximately \$10M and prematurely retire the T1/T2 transformers. These transformers remain in acceptable condition are not scheduled to be replaced by Hydro One within the study period.

Alternative 3 – Modify the CT Ratio: This alternative would require modifying the CT ratio of the low voltage transformer breaker CTs to realize the full supply capacity of the transformers.

The TWG recommends Alternative 3 as the preferred and cost effective alternative for addressing the need. CT ratios are established based on expected loading at a station and typically lower when transformer stations are initially constructed. As the load increases these ratios must be adjusted to ensure protection, control and metering continue to operate as intended. This solution utilizes existing assets without incurring additional high capital expenditures and will allow the station LTR to increase to 108MW (summer) and 177MW (winter) once completed. The budgetary cost for this alternative is expected to be \$0.5M

7.1.2 Barrie TS

The Barrie Area Transmission Upgrade (BATU) project is presently underway and scheduled to be in-service in 2023. Barrie TS will be upgraded to a new 230/44kV 125MVA transformer station with 8 feeder positions (six for Alectra Utilities and two for Hydro One Distribution with InnPower as an embedded customer).

Barrie TS will have a 10-Day LTR of 162MW and the forecasted load will exceed its normal supply capacity in 2028 based on the summer demand forecast (see Table 7-3 below). Coincident with the station capacity violation, Hydro One distribution and its embedded LDC (InnPower) will also see a supply capacity constraint on their two 44kV feeders in 2028. Minor capacity increases can be accommodated on the 44kV system, but only on an emergency basis and cannot be used as a permanent supply solution for increased load growth. InnPower will

need new supply capacity into the Innisfil service territory to service its load growth beyond the 2-feeder capacity that Barrie TS can supply.

An Innisfil supply study was completed to evaluate supply options for InnPower and consequently help to offload demand from Barrie TS. Results of this study are described in the alternatives below.

Station	LTR						Load F	orecast				
Station	(MW)	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Barrie TS	162	98	119	128	141	154	161	163	164	167	170	174

Table 7-3 Barrie TS Load Forecast

Alternative 1 - Maintain Status Quo:

This alternative was considered and rejected as it does not address future station capacity restrictions at Barrie TS, nor does it provide InnPower with the mid-term supply capacity required for load growth in their service territory.

Alternative 2 – Inn Power to connect to existing Alectra Feeder as embedded customer:

This solution was initially discussed by the TWG in the first planning cycle to provide increased supply to InnPower without additional station work at Barrie TS. Spare feeder capacity is not available and thus, this alternative fails to meet the full supply needs within the study period and will need to be combined with alternate solutions. This alternative was rejected on this basis, and thus costs have not been explored further.

Alternative 3 – Install an Additional 44kV feeder position from Barrie TS:

This solution was discussed with the TWG and closely relates to Alternative 2. A new dedicated feeder position for InnPower will provide up to 25MW supply capacity, however this solution would still fail to meet the full supply needs of InnPower within the study period, and the increased load will still be seen at Barrie TS triggering a capacity need in 2028. This solution will need to be combined with alternate solutions to relieve Barrie TS. The combined transmission and distribution costs to install and construct a new distribution line from Barrie TS is estimated to cost \$20M, however this alternative is rejected as it does address capacity needs at Barrie TS.

Alternative 4 – Load existing 44kV supply feeders beyond normal capacity

This alternative was explored by the TWG to increase supply on the two 44kV feeders from Barrie TS beyond the normal supply capacity. This solution requires increased voltage support on the distribution system along the feeders and will provide up to 20MW increased supply capacity (10MW/feeder). Distribution costs to facilitate increased feeder loading is estimated to cost \$8M, however this alternative is rejected as it still does address Capacity needs at Barrie TS.

Alternative 5 – Provide 230kV tap connection to Innisfil service territory for new transformer station

This alternative involves construction of a 230/27.6kV 50/83MVA transformer station in Innisfil to supply the increased load demand forecast. This station will connect directly to the 230kV E28B/E29B circuits which will be completed in 2023 as part of the Barrie Area Transmission Upgrade project. A new 9km double circuit 230kV transmission line will be constructed to connect this new transformer station.

This alternative will provide increased supply capacity for InnPower within the study period and allow for load growth in the future. This alternative can be utilized as a standalone solution to meet the needs without additional interim investments or in conjunction with other alternatives presented above. This solution also allows InnPower to transfer load to this station which would otherwise be connected to Alliston TS. This transfer of load helps to mitigate a capacity need during the study period which would see an additional expenditure to increase supply capacity on the T3/T4 DESN at Alliston TS.

The estimated cost for this investment is expected to be \$44M which is comprised of \$14M for transmission line construction and \$30M for a new transformer station.

The TWG recommends proceeding with Alternative 5. This alternative provides a robust transmission solution to meet InnPower's demand forecast and will also allow for future load growth beyond the study period. This solution will also help to relieve Barrie TS which will see a capacity need in 2028. Based on findings in the Needs Assessment and IRRP, Hydro One and InnPower have commenced development work on this alternative to meet the 2028 need date and TWG recommends continuing with this work.

7.1.3 Waubaushene TS

Waubaushene TS presently has 230/44 83MVA transformers (T5/T6) with a summer LTR of 94MW. This station will exceed its normal supply capacity in 2028 (see Table 7-4 below).

Summer overloading at this station continues to be of concern and the TWG agrees that a solution is required to address this need. Hydro One Distribution has permanently transferred 10MW of load from Waubaushene TS to Midhurst TS to help with recent summer loading concerns, however a solution is required to further address the upcoming supply capacity need.

Station	LTR					Loa	nd Fore	cast				
Station	(MW)	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Waubaushene TS	94	90	90	91	92	93	94	96	97	99	100	102

Table 7-4 Waubaushene TS Load Forecast

Alternative 1 - Maintain Status Quo: This solution is not recommended as it does not address the supply capacity need at the station. This solution will prevent load growth at this station beyond 2027.

Alternative 2 – Load Transfer to neighboring stations

This solution was explored during the NA and IRRP phase. Hydro One distribution assessed transfer capability to other stations and determined that a maximum of 10MW of load could be transferred, and this was completed in Q1 2022. Further transfers are not feasible without significant distribution construction costs and regulators on the low voltage network estimated to be \$ 5-10 M depending on feeder construction and voltage regulation.

Alternative 3 – Replace End-of-Life Waubaushene TS T5/T6 transformers with upgraded 125MVA units.

Replace and upgrade existing T5/T6 transformers with larger 75/125MVA units. This solution will increase supply capacity to allow load to continue to grow as per the demand forecast.

The TWG recommends Alternative 3 as the preferred and cost-effective alternative for addressing the need. The existing T5/T6 transformers at Waubaushene TS have been identified by Hydro One as requiring replacement based on their asset condition and is planned for replacement in 2027. This date coincides with the supply capacity need timing as shown in Table 7.4 and thus the TWG agrees this is the ideal scenario to address the capacity need and right size the transformers. The budgetary cost for the replacement and upgrade of the transformers is expected to be \$20M. Hydro One will follow Ontario Energy Board (OEB) approved procedures to determine appropriate cost allocation as this project addresses both a sustainment and capacity upgrade need.

7.1.4 Midhurst TS and Minden TS

As identified in Table 7-1, the stations listed below will require capacity relief beyond 2032. Based on the longterm horizon of these needs the load at these stations will be reviewed in the next regional planning cycle. The timing for capacity relief of these stations is shown below:

- Midhurst TS T1/T2: 2033 and Midhurst TS T3/T4: 2034
- Minden TS T3/T4: 2036

7.2 Supply Capacity Needs

The M6E/M7E circuits are a 230kV double circuit transmission line forming a critical path between Essa TS and Minden TS. These circuits are approximately 120 km long and serve to provide connection to load serving stations and provide a path for network flows. Based on the coincident load forecast of the stations in the region, sections of this line will start to experience supply capacity violations at the end of the study period and will require mitigating solutions to allow for increased flows. The two circuit sections are described below:

- 1. Essa TS x Midhurst TS (10km) For the loss of M6E or M7E, the companion circuit will exceed its Long-Term Emergency (LTE) rating as early as 2034 based on theload forecast.
- Minden TS x Coopers Falls JCT (51km) This section of transmission line will experience Long-Term Emergency (LTE) rating violations as early as 2038 for a Minden TS HL7 breaker failure, and Essa T3 contingency with M7E out of service.

Based on the long-term horizon of these needs solutions to address them will be further explored in the next regional planning cycle. Flows on this line and its violations are heavily influenced by area resource assumptions and demand forecast of the transformer stations connected to this circuits. IESO has also identified that incremental cost effective CDM, storage and other non-wires alternatives will be explored to address this need. The TWG will review this need in the next regional planning cycle and initiate an investment should this violation be advanced due to changing system conditions.

7.3 Asset Renewal Needs for Major HV Transmission Equipment

A number of Hydro One facilities in the South Georgian Bay-Muskoka Region will require replacement over the 2022-2032 study period. Hydro One is the only Transmission Asset Owner (TAO) in the Region.

The asset renewal assessment considers options for right sizing the equipment such as:

- Maintaining the status quo;
- Replacing equipment with similar equipment with *lower* ratings and built to current standards;
- Replacing equipment with similar equipment with *lower* ratings and built to current standards by transferring some load to other existing facilities;
- Eliminating equipment by transferring all the load to other existing facilities;
- Replacing equipment with similar equipment and built to current standards (i.e., "like-for-like" replacement); and,
- Replacing equipment with higher ratings and built to current standards.

7.3.1 Transmission Line Refurbishment

The following transmission line sections were identified by Hydro One as requiring refurbishment over the study period based on asset condition assessment:

- 1. M6E/M7E Orillia x Coopers Fls This is a 50km 230kV line section that was in-serviced in 1950. Based on asset condition assessment, this line section requires like for like refurbishment to ensure supply reliability and safety is maintained. The planned in-service date for this investment is 2026.
- E8V / E9V Orangeville TS X Essa JCT This is a 112km 230kV line section that was in-serviced in 1950. Based on asset condition assessment, this line section requires like for like refurbishment to ensure supply reliability and safety is maintained. The planned in-service date for this investment is 2027.
- D1M / D2M Otter Creek JCT x Minden TS This is a 124km 230kV line section that was in-serviced in 1950. Based on asset condition assessment, this line section requires like for like refurbishment to ensure supply reliability and safety is maintained. The planned in-service date for this investment is 2028.

7.3.2 Transmission Station Refurbishment

Hydro One identified a number of step-down transformers as requiring replacement over the study period based on asset condition assessment. Details of the planned work as recommended by the TWG are given in Table 7-5 below.

No.	Station	Planned In- Service Date*
	In Execution/Construction	
1	Barrie TS	2023
	Replace and upgrade existing 115/44kV 83MVA transformers (T1/T2) with new 230kV/44kV 125MVA transformers. Remove Essa TS T1/T2 autotransformers and convert Barrie TS supply circuits (E3B/E4B) from 115kV to 230kV. This investment is also known as Barrie Area Transmission Upgrade (BATU)	
	and will include replacement of end of life equipment at Essa TS, in addition to increasing both station and supply capacity to the area.	
2	Orangeville TS	2023
	Replace and upgrade existing 230/44kV 83MVA transformers (T3/T4) with new 230/44kV 125MVA units. Replace and upgrade existing nonstandard three winding 230/44/27.6 125MVA transformers (T1/T2) with new dual winding 230/27.6 83MVA units. Reconfigure low voltage equipment and transfer existing 44kV feeders from T1/T2 DESN to the T3/T4 DESN.	
	This replacement plan will decrease the risk of equipment failure and contribute to maintaining supply reliability to Orangeville Hydro and Hydro One Distribution customers in the Orangeville area.	
3	Parry Sound TS	2024
	Replace existing 230/44kV 42MVA transformers (T1/T2) with new 230/44kV 83MVA units and replace station protection and station service equipment.	
	Replacement of these power transformers will help to maintain the reliability of supply and provide increased supply capacity to customers in the area by right sizing to 83MVA units.	
	In Development	
4	Wallace TS	2025
	Replace existing 230/44kV 42MVA transformers (T3/T4) with new 230/44kV 42MVA units. Replacement of Oil circuit breakers will also be part of this investment.	
	This investment will help maintaining reliability of supply to Hydro One Distribution customers and reduce the risk of interruptions caused by station equipment failure.	

5	Midhurst TS	2026
	Replace existing 230/44kV 125MVA T4 transformer with a new like-for-like unit.	
	The T3/T4 DESN presently supplies load to Alectra though 8 x 44kV feeders. T4 is the sole unit that has been identified as requiring replacement due to poor asset condition. This investment will help maintain reliability of supply to area customers and reduce the risk of interruptions caused by transformer asset failure.	
	Load growth in the area will be reviewed in the next regional planning cycle. The TWG will ensure solutions to increase supply capacity in the region are explored in advance of the need date.	
6	Orillia TS	2025
	Replace existing 230/44kV 125MVA T2 transformer with a new like-for-like 230/44kV 125MVA unit.	
	The T1 transformer was replaced in 2015 after failure and does not require replacement during this study period.	
	This investment will help maintain reliability of supply to Hydro One Distribution customersand decrease the risk of interruptions caused by failure of transformer T2.	
7	Bracebridge TS	2026
	Replace existing 230/44kV 83MVA transformer (T1) with new like-for-like 230/44kV 83MVA unit.	
	Bracebridge TS presently has one transformer (T1) and is used to supply 2 x $44kV$ feeders and a backup for industrial pipeline operation. The load at this station is not expected to trigger installation of a second transformer and thus like-for-like replacement of T1 will be sufficient during the study period.	
	This investment will help maintain reliability of supply to area customers and reduce the risk of interruptions caused by transformer asset failure.	
8	Waubaushene TS	2027
	Replace existing 230/44 83MVA transformers (T5/T6) with new 125MVA units. This investment will help to maintain reliability of supply to area customers and provide increased supply capacity to meet demand forecast.	
9	Alliston TS	2030
	Replace existing 230/44kV 83MVA transformers (T3/T4) with new like-for- like 230/44kV 83MVA units.	

This investment will help maintain reliability of supply to area cu	istomers and
reduce the risk of interruptions caused by transformer asset failur	re and
removal of legacy obsolete equipment.	

*The planned in-service year is tentative and is subject to change.

The above asset replacement plans have taken "right sizing" into consideration. All transformer replacements in the development phase are planned to be replacewith like-for-like units based on the load forecast in the study period and Hydro One standard equipment. The TWG recommends that Hydro One proceed with the above station sustainment work to ensure system reliability is maintained.

7.4 Load Security / Restoration

As indicated in section 6.4 there are no load security or restoration violations in the SGB-Muskoka region over the study period. The TWG will continue to monitor and take corrective action as needed.

7.5 Long Term Considerations

Like many other regions in Ontario, load growth in the SGB-Muskoka region will be directly impacted by new energy programs specifically those which help drive electrification. In addition, it is anticipated large market participants will also have incentive programs to modify operations/technologies to reduce greenhouse emissions. Details of how future programs will impact demand is unknown at this time thus the TWG will continue to monitor these trends throughout planning cycles to identify areas in need of investment.

8. CONCLUSION AND NEXT STEPS

THIS REGIONAL INFRASTRUCTURE PLAN REPORT CONCLUDES THE REGIONAL PLANNING PROCESS FOR THE SOUTH GEORGIAN BAY-MUSKOKA REGION.

The major infrastructure investments recommended by the Technical Working Group (TWG) in the near and medium-term planning horizon (2022-2032) are provided in Table 8-1 below, along with their planned in-service dates and budgetary estimates for planning purposes.

Need	Station / Circuit	Investment Description	Lead	Planned In- Service Date ⁵	Cost (\$M) ⁶
	Everett TS	Modify current transformer (CT) ratio setting the low voltage 44kV transformer breakers	HONI	2023	0.5
Station Capacity	Barrie TS	Construct new 230/27.6kV 83MVA transformer station and extend and connect to 230kV E28B/E29B circuits	HONI / Inn Power	2027	44
	Waubaushene TS	Replace and upgrade existing end-of-life 230/44kV 83MVA transformers (T5/T6) with new 230/44kV 125MVA units.	HONI / Hydro One Dx	2027	20
	M6E / M7E (Orillia TS x Coopers Fls) Replace transmission line conductor and associated assets. (25km)		HONI	2026	30
	E8V / E9V (Orangeville TS x Essa JCT)	conductor and associated assets		2027	70
	D1M / D2MReplace transmission line(Minden TS x Otter Creekconductor and associated assets.JCT)(62km)		HONI	2028	70
Asset Renewal Needs for Major HV	Wallace TS	Replace existing 230/44kV 42MVA transformers (T3/T4) with new 230/44kV 42MVA units.	HONI	2030	25
Transmission Equipment	Midhurst TS	Replace existing 230/44kV 125MVA transformer (T4) with a new 230/44kV 125MVA unit.	HONI	2026	12
	Orillia TS	Orillia TS Replace existing 230/44kV 125MVA transformer (T2) with new 230/44kV 125MVA unit		2025	12
	Bracebridge TS	Replace existing 230/44kV 83MVA transformer (T1) with new 230/44kV 83MVA unit	HONI	2026	10
	Alliston TS	Replace existing 230/44kV 83MVA transformer (T3/T4) with new 230/44kV 83MVA units	HONI	2030	16

Table 8-1 Recommended Plans in Region over the Next 10 Ye	ars
---	-----

⁵ The planned in-service dates are tentative and subject to change.

⁶ Costs are based on budgetary planning estimates and excludes the cost for distribution infrastructure (if required).

The South Georgian Bay-Muskoka TWG recommends Hydro One and LDCs continue with the implementation of infrastructure investments listed in Table 8-1. All the other identified needs/options in the long-term will be further reviewed by the TWG in the next regional planning cycle.

9. REFERENCES

- [1] Independent Electricity System Operator, <u>Barrie/Innisfil IRRP (2022)</u>
- [2] Independent Electricity System Operator, Parry Sound Muskoka IRRP (2022)
- [3] Hydro One, South Georgian Bay/Muskoka Needs Assessment (2020)
- [4] Hydro One, <u>South Georgian Bay/Muskoka RIP (2017)</u>
- [5] Independent Electricity System Operator, <u>Barrie/Innisfil IRRP (2016)</u>
- [6] Independent Electricity System Operator, Parry Sound/Muskoka IRRP (2016)
- [7] Independent Electricity System Operator, <u>Ontario Resource and Transmission Assessment</u> <u>Criteria (ORTAC) – Issue 5.0</u> August 07, 2007
- [8] Ontario Energy Board, Transmission System Code (2018)
- [9] Ontario Energy Board, <u>Distribution system Code</u> (2022)

APPENDIX A. SOUTH GEORGIAN BAY-MUSKOKA REGION - STATIONS

No.	Transformer Stations	Voltages (kV)
1.	Alliston TS	230/44
2.	Barrie TS	115/44
3.	Beaverton TS	230/44
4.	Bracebridge TS	230/44
5.	Essa TS	500/230/115
6.	Everett TS	230/44
7.	Lindsay TS	230/44
8.	Meaford TS	230/44
9.	Midhurst TS	230/44
10.	Minden TS	230/44
11.	Muskoka TS	230/44
12.	Orangeville TS	230/44/27.6
13.	Orillia TS	230/44
14.	Parry Sound TS	230/44
15.	Stayner TS	230/115/44
16.	Wallace TS	230/44
17.	Waubaushene TS	230/44

APPENDIX B. SOUTH GEORGIAN BAY-MUSKOKA REGION - TRANSMISSION LINES

Sr. No.	Circuit ID	From Station	To Station	Voltage (kV)
1.	E20/E21S	Essa TS	Stayner TS	230
2.	E26/E27	Essa TS	Parry Sound TS	230
3.	M6E/M7E	Essa TS	Minden TS	230
4.	D1M/D2M	Minden TS	Des Joachims TS	230
5.	D3M/D4M	Minden TS	Des Joachims TS	230
6.	M80B/M81B	Minden TS	Brown Hill TS	230
7.	E3B/E4B	Essa TS	Barrie TS	115
8.	S2S	Stayner TS	Owen Sound TS	115

APPENDIX C. SOUTH GEORGIAN BAY-MUSKOKA REGION - DISTRIBUTORS

Sr. No.	Company	Connection Type (TX/DX)
1.	Hydro One Distribution	ТХ
2.	Alectra Utilities	TX/DX
3.	InnPower	DX
4.	Orangeville Hydro	DX
5	Elexicon Energy	DX
6.	Lakeland Power	DX
7.	EPCOR Electricity Dist. Ontario Inc.	DX
8.	Newmarket-Tay Power Distribution Ltd.	DX
9.	Wasaga Distribution Inc.	DX

APPENDIX D. SOUTH GEORGIAN BAY-MUSKOKA REGION - STATIONS LOAD FORECAST

Summer Net Non-Coincident Load Forecast

Station	DESN ID	LTR (MVA)	LTR(MW)	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042
Alliston TS	T2	83	74.7	44	44	44	44	45	45	45	45	46	46	47	48	48	49	50	51	51	52	53	54	55
Alliston TS	T3/T4	112	100.8	76	80	83	86	90	93	91	91	91	92	92	93	93	93	93	93	94	94	94	94	94
Barrie TS	T1/T2	170	162.0	98	119	128	141	154	161	163	164	167	170	174	178	183	189	195	203	213	222	232	233	233
Beaverton TS	T3/T4	204	193.8	69	69	69	69	70	70	71	71	71	72	73	75	78	82	82	83	83	86	87	87	87
Bracebridge TS	T1	83	74.7	27	27	27	27	27	27	27	27	28	28	28	28	28	29	29	29	29	29	29	30	30
Everett TS	T1/T2	86	77.4	85	86	87	88	90	92	93	95	97	100	105	111	119	130	140	149	156	164	171	171	172
Lindsay TS	T1/T2	169	160.6	84	85	85	85	86	87	88	89	89	90	92	94	97	100	101	101	102	103	104	105	105
Meaford TS	T1/T2	55	52.3	33	33	33	33	33	34	34	34	34	35	37	38	38	38	38	38	39	39	39	40	40
Midhurst TS	T1/T2	171	163	150	151	153	154	156	157	159	160	162	162	163	166	167	169	170	171	173	174	175	176	176
Midhurst TS	T3/T4	166	149.4	123	107	111	115	118	122	125	129	133	136	140	144	151	156	160	163	167	171	175	176	176
Minden TS	T1/T2	58	52	44	44	44	44	44	45	45	45	46	46	46	47	47	48	48	52	52	53	53	53	53
Muskoka TS	T1/T2	179	170.1	113	114	113	113	114	115	116	117	125	125	126	127	130	132	133	134	135	136	137	137	137
Orangeville TS	T1/T2	113	101.7	49	49	52	53	53	54	55	55	56	57	59	60	62	62	63	64	65	65	66	67	67
Orangeville TS	T3/T4	170	161.5	90	91	97	98	99	100	102	103	104	106	110	111	114	116	117	119	120	122	123	124	124
Orillia TS	T1/T2	162	153.9	105	106	106	107	107	108	109	119	120	121	122	123	128	130	131	132	133	134	135	135	135
Parry Sound TS	T1/T2	113	101.7	45	46	45	47	48	50	50	51	54	54	55	55	56	56	56	57	57	58	58	58	59
Stayner TS	T3/T4	191	181.5	129	130	130	131	133	135	136	138	140	143	145	147	150	152	159	161	163	166	168	170	171
Wallace TS	T3/T4	54	48.6	36	36	36	36	36	36	36	36	36	37	37	37	37	38	38	38	38	38	38	39	40
Waubaushene TS	T5/T6	99	94.1	90	90	91	92	93	94	96	97	99	100	102	107	108	111	113	114	115	116	117	117	117

Winter Net Non-Coincident Load Forecast

Station	DESN ID	LTR (MVA)	LV Cap	LTR(MW)	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042
Alliston TS	T2	83	Ν	74.7	32	32	32	32	32	33	33	33	34	34	35	35	36	36	37	37	38	38	39	40	40
Alliston TS	T3/T4	128	Ν	115.2	80	69	74	78	81	85	88	87	86	87	87	87	88	88	88	88	88	89	89	89	88
Barrie TS	T1/T2	200	Y	190.0	74	88	97	109	119	127	127	129	131	133	136	140	144	149	153	160	168	176	184	185	186
Beaverton TS	T3/T4	224	Y	212.8	77	78	78	78	79	79	80	80	81	81	81	82	82	83	84	84	85	88	88	89	90
Bracebridge TS	T1	83	Ν	74.7	34	34	34	34	34	34	34	35	35	35	35	35	35	35	36	36	36	36	36	37	38
Everett TS	T1/T2	95	Ν	85.5	60	61	62	63	64	65	66	67	69	71	75	81	88	99	109	118	125	132	139	139	140
Lindsay TS	T1/T2	192	Y	182.4	92	93	94	94	95	96	97	98	98	99	100	101	102	102	103	104	105	105	107	106	107
Meaford TS	T1/T2	62	Y	58.9	43	44	44	44	44	44	44	45	45	45	52	52	53	53	53	54	54	54	54	55	56
Midhurst TS	T1/T2	194	Y	184.3	116	116	117	118	119	120	121	122	123	124	125	126	127	128	128	129	130	131	132	132	133
Midhurst TS	T3/T4	191	Ν	171.9	96	85	88	90	93	95	98	101	103	106	108	111	114	117	119	122	125	127	130	131	132
Minden TS	T1/T2	64	Ν	58	55	55	55	55	55	56	56	56	57	57	57	58	58	58	59	63	63	63	64	64	65
Muskoka TS	T1/T2	209	Y	198.6	146	146	146	147	148	150	151	151	158	159	160	161	162	163	164	165	166	167	168	168	169
Orangeville TS	T1/T2	133	Ν	119.7	42	42	45	46	46	46	47	47	47	48	52	52	55	55	56	56	56	57	57	58	58
Orangeville TS	T3/T4	200	Y	190.0	78	78	84	85	86	86	87	87	88	89	97	97	102	103	103	104	104	105	106	107	107
Orillia TS	T1/T2	184	Y	174.8	108	109	110	111	112	112	113	123	123	124	125	126	127	128	129	130	131	132	133	133	134
Parry Sound TS	T1/T2	133	Ν	119.7	59	60	60	62	64	65	66	66	69	69	70	70	71	71	72	73	73	74	74	75	76
Stayner TS	T3/T4	213	Y	202.4	135	136	137	138	139	141	142	144	145	147	148	150	152	154	167	169	171	173	175	176	178
Wallace TS	T3/T4	60	Ν	54.0	38	38	38	38	39	39	39	39	39	39	39	40	40	40	40	40	41	41	41	42	42
Waubaushene TS	T5/T6	109	Y	103.6	74	75	76	76	77	78	79	80	80	81	82	83	84	85	86	86	87	88	89	89	90

APPENDIX E. LIST OF ACRONYMS

Acronym	Description
A	Ampere
BES	Bulk Electric System
BPS	Bulk Power System
CDM	Conservation and Demand Management
CIA	Customer Impact Assessment
GS	Generating Station
CTS	Customer Transformer Station
DESN	Dual Element Spot Network
DER	Distributed Energy Resource
DG	Distributed Generation
DSC	Distribution System Code
GS	Generating Station
GTA	Greater Toronto Area
HV	High Voltage
IESO	Independent Electricity System Operator
IRRP	Integrated Regional Resource Plan
kV	Kilovolt
LDC	Local Distribution Company
LP	Local Plan
LTE	Long Term Emergency
LTR	Limited Time Rating
LV	Low Voltage
MTS	Municipal Transformer Station
MW	Megawatt
MVA	Mega Volt-Ampere
MVAR	Mega Volt-Ampere Reactive
NA	Needs Assessment
NERC	North American Electric Reliability Corporation
NGS	Nuclear Generating Station
NPCC	Northeast Power Coordinating Council Inc.
NUG	Non-Utility Generator
OEB	Ontario Energy Board
OPA	Ontario Power Authority
ORTAC	Ontario Resource and Transmission Assessment Criteria
PF	Power Factor
PPWG	Planning Process Working Group
RIP	Regional Infrastructure Plan
ROW	Right-of-Way
SA	Scoping Assessment
SIA	System Impact Assessment
SPS	Special Protection Scheme
SS	Switching Station
TS	Transformer Station
TSC	Transmission System Code
UFLS	Under Frequency Load Shedding
ULTC	Under Load Tap Changer
UVLS	Under Voltage Load Rejection Scheme