

Toronto

REGIONAL INFRASTRUCTURE PLAN

March 6, 2020

(This page is intentionally left blank)

Prepared and supported by:

Company
Alectra Utilities Corporation
Elexicon Energy Inc.
Hydro One Networks Inc. (Distribution)
Independent Electricity System Operator (IESO)
Toronto Hydro-Electric System Limited
Hydro One Networks Inc. (Lead Transmitter)

DISCLAIMER

This Regional Infrastructure Plan ("RIP") report was prepared for the purpose of developing an electricity infrastructure plan to address all near and mid-term needs identified in previous planning phases and any additional needs identified based on new and/or updated information provided by the RIP Study Team.

The preferred solution(s) that have been identified in this report may be reevaluated based on the findings of further analysis. The load forecast and results reported in this RIP report are based on the information provided and assumptions made by the participants of the RIP Study Team.

Study Team participants, their respective affiliated organizations, and Hydro One Networks Inc. (collectively, "the Authors") make no representations or warranties (express, implied, statutory or otherwise) as to the RIP report or its contents, including, without limitation, the accuracy or completeness of the information therein and shall not, under any circumstances whatsoever, be liable to each other, or to any third party for whom the RIP report ("the Other Third Parties"), for any direct, indirect or consequential loss or damages or for any punitive, incidental or special damages or any loss of profit, loss of contract, loss of opportunity or loss of goodwill resulting from or in any way related to the reliance on, acceptance or use of the RIP report or its contents by any person or entity, including, but not limited to, the aforementioned persons and entities.

EXECUTIVE SUMMARY

THIS REGIONAL INFRASTRUCTURE PLAN ("RIP") WAS PREPARED BY HYDRO ONE WITH SUPPORT FROM THE RIP STUDY TEAM IN ACCORDANCE TO THE ONTARIO TRANSMISSION SYSTEM CODE REQUIREMENTS. IT IDENTIFIES INVESTMENTS IN TRANSMISSION FACILITIES, DISTRIBUTION FACILITIES, OR BOTH, THAT SHOULD BE DEVELOPED AND IMPLEMENTED TO MEET THE ELECTRICITY INFRASTRUCTURE NEEDS WITHIN THE TORONTO REGION.

The participants of the Regional Infrastructure Plan ("RIP") Study Team included members from the following organizations:

- Alectra Utilities ("Alectra")
- Elexicon Energy Inc. ("Elexicon")
- Hydro One Networks Inc. (Distribution)
- Independent Electricity System Operator ("IESO")
- Toronto Hydro-Electric System Limited ("THESL")
- Hydro One Networks Inc. (Transmission)

This RIP is the final phase of the second cycle of Toronto regional planning process, which follows the completion of the Toronto Integrated Regional Resource Plan ("IRRP") in August 2019 and the Toronto Region Needs Assessment ("NA") in October 2017. This RIP provides a consolidated summary of the needs and recommended plans for Toronto Region over the planning horizon (1 - 20 years) based on available information.

This RIP discusses needs identified in the previous regional planning cycle, the Needs Assessment and IRRP reports for this cycle, and wires solutions recommended to address these needs. Implementation plans to address some of these needs are already completed or are underway. Since the previous regional planning cycle, the following projects have been completed:

- Midtown Transmission Reinforcement Project (completed in 2016)
- Clare R. Copeland 115 kV Switching Station and Copeland MTS (completed in 2019)
- Manby SPS Load Rejection (L/R) Scheme (completion in 2019)

The major infrastructure investments recommended by the Study Team in the near and mid-term planning horizon are provided in the Table 1 below, along with their planned in-service date and budgetary estimates for planning purpose.

No.	Need	Recommended Action Plan	Planned I/S Date	Budgetary Estimate ⁽¹⁾
1	Main TS: End-of-life of transformers T3/T4	Replace the end-of-life transformers with similar type and size equipment as per current standard	2021	\$33M
2	H1L/H3L/H6LC/H8LC: End-of- life of Leaside Jct. to Bloor St. Jct. overhead section	Refurbish the end-of-life H1L/H3L/ H6LC/H8LC section	2023	\$11M
3	L9C/L12C: End-of-life of Leaside TS to Balfour Jct. overhead section	Refurbish the end-of-life L9C/L12C section	2023	\$3M
4	C5E/C7E: End-of-life of underground cables between Esplanade TS and Terauley TS	Replace the end-of-life C5E/C7E cables	2024	\$128M
5	Richview TS to Manby TS 230 kV Corridor Reinforcement	Replace existing idle 115 kV double circuit line with new 230 kV double circuit line between Richview TS and Manby TS	2023	\$21M
6	Manby TS: End-of-life of autotransformers (T7, T9, T12), step-down transformer (T13), and the 230 kV switchyard	Replace the end-of-life transformers with similar type and size equipment as per current standard, and refurbish/reconfigure Manby 230 kV switchyard	2025	\$85M
7	Bermondsey TS: End-of-life of transformers T3/T4	Replace the end-of-life transformers with similar type and size equipment as per current standard	2025	\$27M
8	John TS: End-of-life of transformers (T1, T2, T3, T4, T5, T6), 115 kV breakers, and LV switchgear	Replace with similar type and size equipment as per current standard	2026	\$102M

Table 1. Recommended Plans in Toronto Region over the Next 10 Years

(1) Budgetary estimates are provided for Hydro One's portion of the work

The Study Team recommends that:

- Hydro One to continue with the implementation of infrastructure investments listed in Table 1 while keeping the Study Team apprised of project status;
- All the other identified needs/options in the long-term will be further reviewed by the Study Team in the next regional planning cycle.

TABLE OF CONTENTS

Disclair	mer	4
Executi	ve Summary	5
Table o	f Contents	7
1 In	troduction	
1.1	Objectives and Scope	9
1.2	Structure	10
2 Re	gional Planning Process	11
2.1	Overview	11
2.2	Regional Planning Process	11
2.3	RIP Methodology	13
	gional Characteristics	
4 Tr	ansmission Facilities/Projects Completed and/or Underway Over the Last Ten Years	18
5 Lo	bad Forecast and Study Assumptions	20
5.1	Load Forecast	20
5.2	Study Assumptions	20
6 Ac	lequacy of Existing Facilities	22
6.1	230 kV Transmission Facilities	
6.2	230/115 kV Autotransformers Facilities	23
6.3	115 kV Transmission Facilities	23
6.4	Step-Down Transformer Station Facilities	24
6.5	Longer Term Outlook (2030-2040)	25
7 Re	gional Needs and Plans	27
7.1	Main TS: End-of-Life Transformers	28
7.2	H1L/H3L/H6LC/H8LC: End-of-Life Overhead Section (Leaside 34 Jct. to Bloor St. Jct.).	30
7.3	L9C/L12C: End-of-Life Overhead Section (Leaside TS to Balfour Jct.)	
7.4	C5E/C7E: End-of-Life Underground Cables (Esplanade TS to Terauley TS)	
7.5	Richview TS to Manby TS 230 kV Corridor	34
7.6	Manby TS: End-of-Life Transformers and 230 kV Switchyard	
7.7	Bermondsey TS: End-of-Life Transformers	
7.8	John TS: End-of-Life Transformers, 115 kV Breakers, and LV Switchgear	39
7.9	Long-Term Capacity Needs	41
8 Co	onclusions and Next Steps	44
	ferences	
Append	lix A. Stations in the Toronto Region	47
Append	lix B. Transmission Lines in the Toronto Region	50
	lix C. Distributors in the Toronto Region	
Append	lix D. Toronto Region Load Forecast	53

List of Figures

Figure 1-1: Toronto Region Map	9
Figure 2-1: Regional Planning Process Flowchart	13
Figure 2-2: RIP Methodology	14
Figure 3-1: Single Line Diagram of Toronto Region's Transmission Network	16
Figure 5-1: Toronto Region Load Forecast	20
Figure 7-1: Main TS	29
Figure 7-2: H1L/H3L/H6LC/H8LC Section between Leaside 34 Jct. and Bloor St. Jct.	30
Figure 7-3: L9C/L12C Section between Leaside TS and Balfour Jct	31
Figure 7-4: C5E/C7E Underground Cable Section between Esplanade TS and Terauley TS	33
Figure 7-5: Richview TS to Manby TS 230 kV Corridor	34
Figure 7-6: Richview TS to Manby TS 230 kV Corridor – Phase 1	35
Figure 7-7: Richview TS to Manby TS 230 kV Corridor – Phase 2	36
Figure 7-8: Manby TS	37
Figure 7-9: Bermondsey TS and Surrounding Stations	
Figure 7-10: John TS	39

List of Tables

22
25
25
26
27
28
44
53
s.54
55
56

1 INTRODUCTION

THIS REPORT PRESENTS THE REGIONAL INFRASTRUCTURE PLAN ("RIP") TO ADDRESS THE ELECTRICITY NEEDS OF THE TORONTO REGION BETWEEN 2019 AND 2039.

The report was prepared by Hydro One Networks Inc. (Transmission) ("Hydro One") on behalf of the Study Team that consists of Hydro One, Alectra Utilities ("Alectra"), Elexicon Energy Inc. ("Elexicon"), Hydro One Networks Inc. (Distribution), the Independent Electricity System Operator ("IESO"), and Toronto Hydro-Electric System Limited ("THESL") in accordance with the new Regional Planning process established by the Ontario Energy Board in 2013.

The Toronto Region is comprised of the area within the municipal boundary of the City of Toronto. Electrical supply to the region is provided by thirty-five 230 kV and 115 kV step-down transformer stations ("TS") as shown in Figure 1-1. The outer parts of the region to the east, north, and west are supplied by fifteen 230/27.6 kV and two 230/27.6-13.8 kV step-down transformer stations. The central area is supplied by two 230/115 kV autotransformer stations at Leaside TS and Manby TS, and sixteen 115/13.8 kV and two 115/27.6 kV step-down transformer stations.

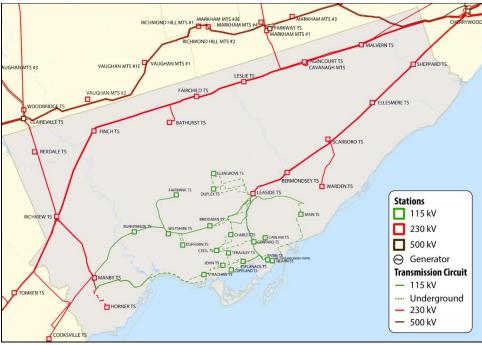


Figure 1-1: Toronto Region Map

1.1 Objectives and Scope

The RIP report examines the needs in the Toronto Region. Its objectives are to:

• Provide a comprehensive summary of needs and wires plans to address the needs;

- Identify any new needs that may have emerged since previous planning phases e.g., Needs Assessment ("NA"), Scoping Assessment ("SA"), and/or Integrated Regional Resource Plan ("IRRP");
- Assess and develop a wires plan to address these needs; and
- Identify investments in transmission and distribution facilities or both that should be developed and implemented on a coordinated basis to meet the electricity infrastructure needs within the region.

The RIP reviewed factors such as the load forecast, major high voltage sustainment issues emerging over the near, mid- and long-term horizon, transmission and distribution system capability along with any updates to local plans, conservation and demand management ("CDM") forecasts, renewable and nonrenewable generation development, and other electricity system and local drivers that may impact the need and alternatives under consideration.

The scope of this RIP is as follows:

- A consolidated report of the relevant wires plans to address near and medium-term needs identified in previous planning phases (Needs Assessment, Scoping Assessment, and/or Integrated Regional Resource Plan);
- Discussion of any other major transmission infrastructure investment plans over the planning horizon;
- Identification of any new needs and a wires plan to address these needs based on new and/or updated information;
- Develop a plan to address any longer term needs identified by the Study Team.

1.2 Structure

The rest of the report is organized as follows:

- Section 2 provides an overview of the regional planning process.
- Section 3 describes the regional characteristics.
- Section 4 describes the transmission work completed over the last ten years.
- Section 5 describes the load forecast and study assumptions used in this assessment.
- Section 6 describes the adequacy of the transmission facilities in the region over the study period.
- Section 7 discusses the needs and provides the alternatives and preferred solutions.
- Section 8 provides the conclusion and next steps.

2 REGIONAL PLANNING PROCESS

2.1 Overview

Planning for the electricity system in Ontario is done at three levels: bulk system planning, regional system planning, and distribution system planning. These levels differ in the facilities that are considered and the scope of impact on the electricity system. Planning at the bulk system level typically looks at issues that impact the system on a provincial level, while planning at the regional and distribution levels looks at issues on a more regional or localized level.

Regional planning looks at supply and reliability issues at a regional or local area level. Therefore, it largely considers the 115 kV and 230 kV portions of the power system that supply various parts of the province.

2.2 Regional Planning Process

A structured regional planning process was established by the Ontario Energy Board ("OEB") in 2013 through amendments to the Transmission System Code ("TSC") and Distribution System Code ("DSC"). The process consists of four phases: the Needs Assessment ¹ ("NA"), the Scoping Assessment ("SA"), the Integrated Regional Resource Plan ("IRRP"), and the Regional Infrastructure Plan ("RIP").

The regional planning process begins with the NA phase, which is led by the transmitter to determine if there are regional needs. The NA phase identifies the needs and the Study Team determines whether further regional coordination is necessary to address them. If no further regional coordination is required, further planning is undertaken by the transmitter and the impacted local distribution company ("LDC") or customer and develops a Local Plan ("LP") to address them.

In situations where identified needs require coordination at the regional or sub-regional levels, the IESO initiates the SA phase. During this phase, the IESO, in collaboration with the transmitter and impacted LDCs, reviews the information collected as part of the NA phase, along with additional information on potential non-wires alternatives, and makes a decision on the most appropriate regional planning approach. The approach is either a RIP, which is led by the transmitter, or an IRRP, which is led by the IESO. If more than one sub-region was identified in the NA phase, it is possible that a different approach could be taken for different sub-regions.

The IRRP phase will generally assess infrastructure (wires) versus resource (CDM and Distributed Generation) options at a higher or more macro level, but sufficient to permit a comparison of options. If the IRRP phase identifies that infrastructure options may be most appropriate to meet a need, the RIP phase will conduct detailed planning to identify and assess the specific wires alternatives and recommend a preferred wires solution. Similarly, resource options that the IRRP identifies as best suited to meet a need are then further planned in greater detail by the IESO. The IRRP phase also includes IESO led stakeholder engagement with municipalities, Indigenous communities, business sectors and other interested stakeholders in the region.

¹ Also referred to as Needs Screening

The RIP phase is the fourth and final phase of the regional planning process and involves: discussion of previously identified needs and plans; identification of any new needs that may have emerged since the start of the planning cycle; and development of a wires plan to address the needs where a wires solution would be the best overall approach. This phase is led and coordinated by the transmitter and the deliverable is a comprehensive report of a wires plan for the region. Once completed, this report is also referenced in transmitter's rate filing submissions and as part of LDC rate applications with a planning status letter provided by the transmitter.

To efficiently manage the regional planning process, Hydro One has been undertaking wires planning activities in collaboration with the IESO and/or LDCs for the region as part of and/or in parallel with:

- Planning activities that were already underway in the region prior to the new regional planning process taking effect;
- The NA, SA, and LP phases of regional planning;
- Participating in and conducting wires planning as part of the IRRP for the region or sub-region;
- Working and planning for connection capacity requirements with the LDCs and transmission connected customers.

Figure 2-1 illustrates the various phases of the regional planning process (NA, SA, IRRP, and RIP) and their respective phase trigger, lead, and outcome.

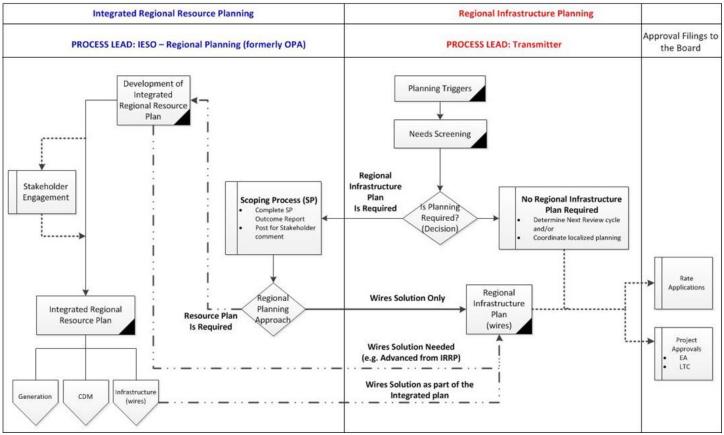


Figure 2-1: Regional Planning Process Flowchart

2.3 RIP Methodology

The RIP phase consists of a four step process (see Figure 2-2) as follows:

- Data Gathering: The first step of the process is the review of planning assessment data collected in the previous phase of the regional planning process. Hydro One collects this information and reviews it with the Study Team to reconfirm or update the information as required. The data collected includes:
 - Net peak demand forecast at the transformer station level. This includes the effect of any distributed generation or conservation and demand management programs.
 - Existing area network and capabilities including any bulk system power flow assumptions.
 - Other data and assumptions as applicable such as asset conditions; load transfer capabilities, and previously committed transmission and distribution system plans.
- 2) Technical Assessment: The second step is a technical assessment to review the adequacy of the regional system including any previously identified needs. Depending upon the changes to load forecast or other relevant information, regional technical assessment may or may not be required

or be limited to specific issue only. Additional near and mid-term needs may be identified in this phase.

- 3) Alternative Development: The third step is the development of wires options to address the needs and to come up with a preferred alternative based on an assessment of technical considerations, feasibility, environmental impact and costs.
- 4) Implementation Plan: The fourth and last step is the development of the implementation plan for the preferred alternative.

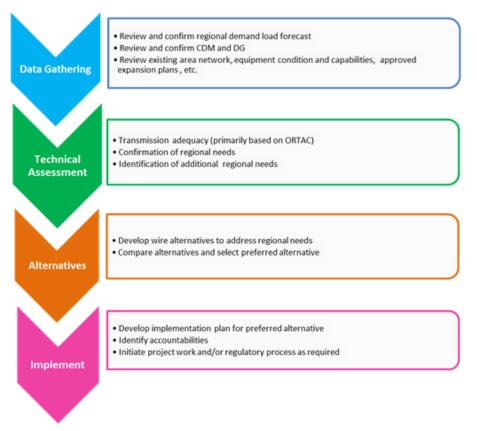


Figure 2-2: RIP Methodology

3 REGIONAL CHARACTERISTICS

THE TORONTO REGION INCLUDES THE AREA ROUGHLY BORDERED GEOGRAPHICALLY BY LAKE ONTARIO ON THE SOUTH, STEELES AVENUE ON THE NORTH, HIGHWAY 427 ON THE WEST, AND REGIONAL ROAD 30 ON THE EAST. IT CONSISTS OF THE CITY OF TORONTO, WHICH IS THE LARGEST CITY IN CANADA AND THE FOURTH LARGEST IN NORTH AMERICA.

Bulk electrical supply to the Toronto Region is provided through three 500/230 kV transformers stations at Claireville TS, Cherrywood TS, and Parkway TS and a network of 230 kV and 115 kV transmission lines and step-down transformation facilities. Local generation in the area consists of the 550 MW Portlands Energy Centre located near the Downtown area and connected to the 115 kV network at Hearn Switching Station ("SS"). The Toronto Region summer coincident peak demand in 2018 was about 4,660 MW which represents about 20% of the gross total demand (23240 MW) in the province.

Toronto Hydro-Electric System Limited ("THESL") is the main Local Distribution Company ("LDC") which serves the electricity demand in the Toronto Region. Other LDCs supplied from electrical facilities in the Toronto Region are Hydro One Networks Inc. Distribution, Alectra Utilities and Elexicon Energy Inc. The LDCs receive power at the step-down transformer stations and distribute it to the end-users – industrial, commercial and residential customers.

A single line diagram showing the electrical facilities of the Toronto Region is provided in Figure 3-1. Copeland MTS is a new THESL owned transformer station which serves the Downtown area and came into service in Q1 2019.

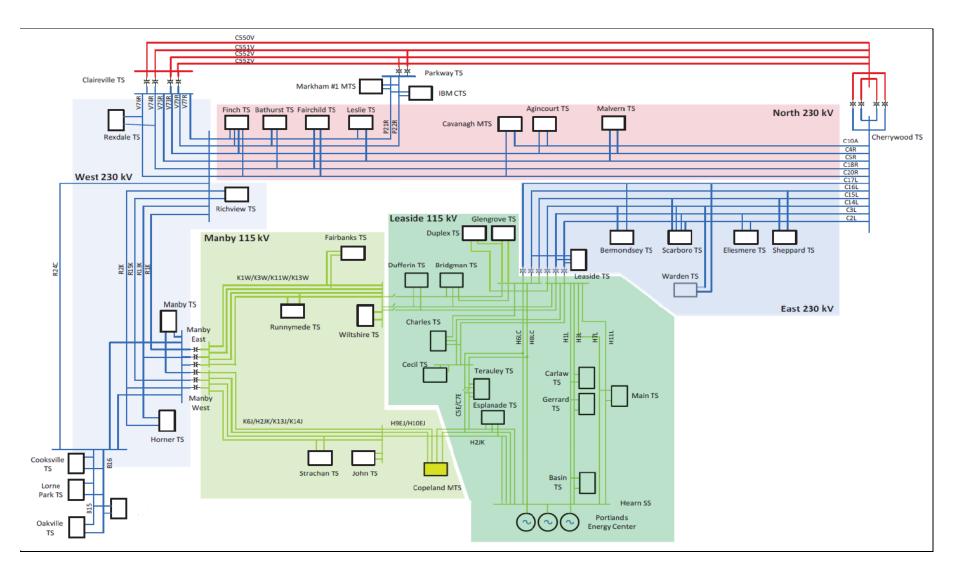


Figure 3-1: Single Line Diagram of Toronto Region's Transmission Network

•

•

•

The thirty-five Toronto's transformer stations can be grouped into five electrical zones based on their HV supply network:

- 1. Leaside 115 kV Area: The transformer stations in this area are supplied by the Leaside TS 230/115 kV autotransformers, and serve roughly the customers in the eastern part of Central Toronto. A list of the transformer stations in this area is provided below.
 - **Basin TS**
- Cecil TS
 - Charles TS
- •
- Duplex TS
- Glengrove TS

- Bridgman TS
- - Esplanade TS •
 - Main TS

- Carlaw TS **Dufferin TS** •
- Gerrard TS •
- Terauley TS
- 2. Manby 115 kV Area: This area covers the western part of Central Toronto which is supplied by the Manby TS 230/115 kV autotransformers. The transformer stations in this area is listed below.
 - Copeland MTS •

Fairbank TS

- John TS Runnymede TS
- Strachan TS • Wiltshire TS •
- 3. East 230 kV Area: This area includes transformer stations connected to the 230 kV circuits between Cherrywood TS and Leaside TS C2L/C3L, C14L/C15L, and C16L/C17L, serving customers in the outer-eastern part of Toronto and Scarborough areas. Below are the transformer stations in East 230 kV area.
 - Bermondsey TS Leaside TS Sheppard TS
 - Scarboro TS Warden TS Ellesmere TS •
- 4. North 230 kV Area: This area covers the outer northern part of Toronto bordering the York Region. The transformer stations in this area, listed below, are supplied by the 230kV circuits connecting Richview TS, Cherrywood TS, and/or Parkway TS C4R/C5R, C18R/C20R, P21R/P22R.
 - Agincourt TS
- Fairchild TS
- Leslie TS

- Bathurst TS
- Finch TS •
- Malvern TS

- Cavanagh MTS •
- 5. West 230 kV Area: The transformer stations in this area serve customers in the outer western part of Toronto including Etobicoke, and includes stations supplied by the Claireville TS to Richview TS 230 kV circuits V73R/V74R/V75R/V76R/V77R/V79R and the Richview TS to Manby TS 230 kV circuits R1K/R2K and R13K/R15K. Below are the transformer stations in West 230 kV area.
 - Horner TS Rexdale TS • •
 - **Richview TS** • Manby TS •

4 TRANSMISSION FACILITIES/PROJECTS COMPLETED AND/OR UNDERWAY OVER THE LAST TEN YEARS

OVER THE LAST TEN YEARS, A NUMBER OF TRANSMISSION PROJECTS HAVE BEEN PLANNED AND UNDERTAKEN BY HYDRO ONE AIMED TO MAINTAIN THE RELIABILITY AND ADEQUACY OF ELECTRICITY SUPPLY TO THE TORONTO REGION.

A summary and description of the major projects completed and/or currently underway over the last ten years is provided below.

- Incorporation of the 550 MW Portland's Energy Centre (2009) Covered modification to the Hearn 115 kV switchyard to connect the new generation.
- 115 kV Switchyard Work at Hearn SS, Leaside TS, and Manby TS (2013, 2014) Includes replacement of the aging 115 kV switchyard at Hearn SS with a new gas-insulated switchgear ("GIS") and replacement of all 115 kV oil breakers at Leaside TS and Manby TS.
- Manby 230 kV Reconfiguration (2014) Re-tapped Horner TS from the circuit R15K to R13K at Manby TS to balance and improve the distribution of loading on the 230 kV Richview TS to Manby TS system.
- Lakeshore Cable Refurbishment project (2015) Covered replacement of the aging K6J/H2JK 115 kV circuits between Riverside Jct. and Strachan TS.
- Midtown Transmission Reinforcement Project (completed in 2016) Covered replacement of the aging L14W underground cable and addition of a new 115 kV circuit between Leaside TS and Bridgman TS.
- Clare R. Copeland 115 kV Switching Station (completed in 2019) Built to connect a new THESL owned 115/13.8 kV step-down transformer station (Copeland MTS) in Downtown Toronto.
- Runnymede TS DESN#2 and Manby TS to Wiltshire TS Circuits Upgrade Project (2018) covered building of a second 50/83MVA, 115/27.6kV DESN at Runnymede TS and reinforcement of the Manby TS to Wiltshire TS 115kV circuits to accommodate increasing load demand in the area.
- Manby SPS Load Rejection (L/R) Scheme (2019) Built to ensure that loading on in-service equipment at Manby TS is not exceeded for loss of two out of three autotransformers in the Manby East TS and Manby West switchyards.

- Horner TS DESN #2 Project (2022) covers construction of a second 75/125MVA, 230/28 kV, DESN at the Horner TS site to meet the load growth in the south west Toronto area.
- Richview to Manby Corridor Reinforcement (R X K) Project (2023)– Adding a third double-circuit line between Richview TS and Manby TS, aimed to increase the transmission line capacity between the two stations to meet forecast load demand in the South West GTA.
- Multiple Station Refurbishment Projects Work is also under way on refurbishing Bridgman TS, Fairbank TS, Main TS and Runnymede TS DESN#1. These projects are expected to be completed between 2021 and 2024.

5 LOAD FORECAST AND STUDY ASSUMPTIONS

5.1 Load Forecast

The electricity demand in the Toronto Region is anticipated to grow at an average rate of 0.9% over the next ten years. Figure 5-1 shows the Toronto Region's summer peak load forecast developed during the Toronto IRRP process. This IRRP forecast was used to determine the loading that would be seen by transmission lines and autotransformer stations and to identify the need for additional line and autotransformation capacity. Figure 4-1 also shows the Toronto region's non-coincident load forecast developed using the individual station's peak loads and which was used to determine the need for station capacity.

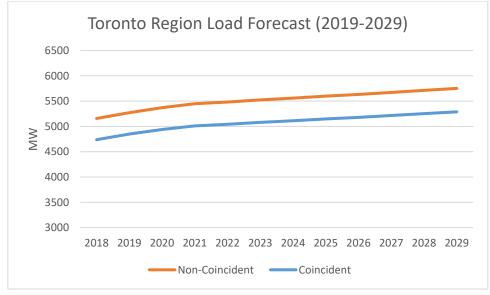


Figure 5-1: Toronto Region Load Forecast

The IRRP forecast shows that the Region peak summer load increases from 4850 MW in 2019 to 5290 MW by 2029. The corresponding non-coincident summer peak loads increase from 5270 MW to about 5750 MW over the same period. The IRRP and non-coincident load forecasts for the individual stations in the Toronto Region is given in Appendix D, Table D-1 and Table D-2.

The IRRP had provide an estimated of the energy-efficiency savings resulting from building codes and equipment standards improvement in Ontario. This has the potential to lower the demand growth in the region to approximately 0.6% annually. Details for the individual stations peak loads considering the energy-efficiency are given in Appendix D, Table D-3 and Table D-4.

5.2 Study Assumptions

The following other assumptions are made in this report.

- The study period for the RIP assessments is 2019-2029.
- All facilities that are identified in Section 4 and that are planned to be placed in-service within the study period are assumed to be in-service.

- Summer is the critical period with respect to line and transformer loadings. The assessment is therefore based on summer peak loads.
- Station capacity adequacy is assessed by comparing the non-coincident peak load with the station's normal planning supply capacity, assuming a 90% lagging power factor for stations having no low-voltage capacitor banks and 95% lagging power factor for stations having low voltage capacitor banks. Normal planning supply capacity for transformer stations is determined by the summer 10-day Limited Time Rating (LTR).
- Line capacity adequacy is assessed by using coincident peak loads in the area.
- Adequacy assessment is conducted as per Ontario Resource Transmission Assessment Criteria (ORTAC).
- Metrolinx plans to connect three Traction Power Substation (TPSS) to Hydro One's 230 kV circuits in Toronto area for GO Transit electrification – Mimico TPSS to K21C and K23C close to Manby TS; City View TPSS to V73R and V77R north of Richview TS; and Scarborough TPSS to C2L and C14L at Scarboro TS. Metrolinx have advised that their current electrification schedule is uncertain and new facilities would be built likely beyond 2023. Appendix F of the 2019 Toronto IRRP ("Richview TS x Manby TS Study") verified that the reinforcement of Richview TS to Manby TS Transmission Corridor is required by 2021 and that Metrolinx new load do not affect the need and timing of the project. After the completion of Richview TS to Manby TS Transmission Reinforcement, the new TPSS loads can be connected without need of any new facilities.

6 ADEQUACY OF EXISTING FACILITIES

THIS SECTION REVIEWS THE ADEQUACY OF THE EXISTING TRANSMISSION AND TRANSFORMER STATION FACILITIES SUPPLYING THE TORONTO REGION OVER THE PLANNING PERIOD (2019-2039). ALL PROJECTS CURRENTLY UNDERWAY ARE ASSUMED IN-SERVICE.

Within the current regional planning cycle two regional assessments have been conducted for the Toronto Region. The findings of these studies are input to this Regional Infrastructure Plan. The studies are:

- 2017 Toronto Region Needs Assessment ("NA") Report
- 2019 Toronto Integrated Regional Resource Plan ("IRRP") and Appendices

This section provides a review of the adequacy of the transmission lines and stations in the Metro Toronto Region. The adequacy is assessed using the latest regional load forecast provided in Appendix D from a loading perspective. Sustainment aspects were identified in the NA report and are addressed in Section 7 of this report. The review assumes that the following projects shown in Table 6-1 are in-service. Sections 6.1 to 6.4 present the results of this review.

Facility	In-Service Date
Second DESN at Horner TS	2022
Richview to Manby 230 kV Corridor Reinforcement	2023
Copeland MTS Phase 2	2024

Table 6-1: New Facilities Assumed In-Service

6.1 230 kV Transmission Facilities

The Metro Toronto 230 kV transmission facilities consist of the following 230 kV transmission circuits (please refer to Figure 3-1):

- a) Cherrywood TS to Leaside TS 230 kV circuits: C2L, C3L C14L, C15L, C16L, and C17L
- b) Cherrywood TS to Agincourt TS 230 kV circuit C10A
- c) Cherrywood TS to Richview TS 230 kV circuits: C4R, C5R, C18R, and C20R
- d) Parkway TS to Richview TS 230 kV circuits: P21R and P22R
- e) Claireville TS to Richview TS 230 kV circuits: V73R, V74R, V75R, V76R, V77R, and V79R
- f) Richview TS to Manby TS 230 kV circuits: R1K, R2K, R13K, and R15K

The Cherrywood TS to Richview TS circuits, the Parkway TS to Richview TS circuits, and the Claireville TS to Richview TS circuits carry bulk transmission flows as well as serve local area station loads within the Sub-Region. These circuits are adequate² over the study period.

The Cherrywood TS to Agincourt TS circuit C10A is a radial circuit that supplies Agincourt TS and Cavanagh MTS. The circuit is adequate over the study period.

The Cherrywood TS to Leaside TS 230 kV circuits supply the Leaside TS 230/115 kV autotransformers as well as serve local area load. These circuits are adequate over the study period.

The Richview TS to Manby TS circuits supply the Manby TS 230/115 kV autotransformer station as well as Horner TS. With the Richview to Manby 230 kV Corridor Reinforcement in-service in 2023, the circuits will be adequate over the study period.

6.2 230/115 kV Autotransformers Facilities

The autotransformers at Manby TS and Leaside TS serve the 115 kV transmission network and local loads in Central Toronto. A 550 MW generation facility Portlands Energy Centre ("PEC") is situated in Central Toronto, connecting to the 115 kV transmission system at Hearn Switching Station ("SS").

The 230/115 kV autotransformers facilities in the region consist of the following elements:

- a. Manby East TS 230/115 kV autotransformers: T7, T8, T9
- b. Manby West TS 230/115 kV autotransformers: T1, T2, T12
- c. Leaside TS 230/115 kV autotransformers: T11, T12, T14, T15, T16, T17

Manby East and West TS autos supply two distinct 115 kV load pockets. Manby East TS autos supply Runnymede TS, Fairbank TS, and Wiltshire TS through the Manby TS to Wiltshire TS circuits. Manby West TS autos normally supply the Strachan TS, John TS, and Copeland MTS through Manby TS to John TS circuits. The Manby TS autotransformer facilities are adequate over the study period.

Leaside TS autos supply the rest of the 115kV transformer stations – Basin TS, Bridgman TS, Carlaw TS, Cecil TS, Charles TS, Dufferin TS, Duplex TS, Esplanade TS, Gerrard TS, Glengrove TS, Main TS, and Terauley TS. The Leaside TS autotransformer facilities are adequate over the study period.

6.3 115 kV Transmission Facilities

The 115 kV transmission facilities in the Metro Toronto Region serve local station loads in the Central Toronto area and are connected to the rest of the grid via Manby TS and Leaside TS autotransformers. The 115 kV transmission facilities can be divided into nine main corridors summarized below.

a. Manby East TS x Wiltshire TS – Four circuits K1W, K3W, K11W, and K12W

² Adequate – means that current flows are with conductor or equipment thermal limits and all area bus voltages meet the Ontario Resource and Transmission Assessment Criteria (ORTAC) under normal and contingency conditions.

- b. Manby West TS x John TS Six circuits H2JK, K6J, K13J, K14J, D11J, and D12J
- c. Leaside TS x Cecil TS Three circuits L4C, L9C, and L12C
- d. Leaside TS x Hearn SS Six circuits H6LC, H8LC, H1L, H3L, H7L, and H11L
- e. Leaside TS x Wiltshire TS Four circuits L13W, L14W, L15, and L18W
- f. Leaside TS x Duplex TS and Glengrove TS Four circuits L5D, L16D, L2Y, and D6Y
- g. Cecil TS x Esplanade TS Two circuits C5E and C7E
- h. John TS x Esplanade TS x Hearn SS Three circuits H2JK, H9DE/D11J, and H10DE/D12J

The Manby East TS to Wiltshire TS 115 kV circuits supply Runnymede TS, Fairbank TS, and Wiltshire TS and were identified as requiring reinforcement in the 2016 Metro Toronto RIP. This work was completed in November 2018. With the completion of this work, the corridor circuits are adequate over the study period.

The Manby West TS to John TS 115 kV circuits supply Strachan TS, John TS and Copeland MTS. The corridor circuits are adequate over the study period.

The Leaside TS to Cecil TS 115 kV circuits and the Leaside TS to Hearn SS 115 kV circuits supply Basin TS, Carlaw TS, Cecil TS, Charles TS, Gerrard TS, and Main TS. The circuits are adequate over the study period.

The Leaside TS to Wiltshire TS corridor supply Bridgman TS and Dufferin TS. It has been recently reinforced with the addition of the L18W circuit in 2016 (Midtown transmission reinforcement). With the completion of this work the existing corridor circuits are adequate over the study period.

The Leaside TS to Duplex TS and Glengrove TS circuits (L5D, L16D, L2Y, and D6Y) are radial circuits that supply loads at Duplex TS and Glengrove TS. The circuits are adequate over the study period.

The Cecil TS to Esplanade TS circuits supply Terauley TS. The circuits are adequate over the study period.

The John TS to Esplanade TS and Hearn SS supply Esplanade TS. The circuits are adequate over the study period.

6.4 Step-Down Transformer Station Facilities

There are a total of 35 step-down transformers stations in the Toronto Region, connected to the 230 kV and 115 kV transmission network as listed below. The stations summer peak load forecast are given in Appendix D Table D-1.

230 kV C	onnected	115 kV Connected				
Agincourt TS	Leslie TS	Basin TS	Esplanade TS	Fairbank TS		
Bathurst TS	Malvern TS	Bridgman TS	Gerrard TS	Copeland MTS		
Bermondsey TS	Rexdale TS	Carlaw TS	Glengrove TS	John TS		
Cavanagh MTS	Scarboro TS	Cecil TS	Main TS	Strachan TS		
Ellesmere TS	Sheppard TS	Charles TS	Terauley TS	Horner TS		
Fairchild TS	Warden TS	Dufferin TS	Wiltshire TS	Manby TS		
Finch TS	Richview TS	Duplex TS	Runnymede TS			
Leaside TS						

Table 6-2: Toronto Step-Down Transformer Stations	Table 6-2:	Toronto	Step-Down	Transformer	Stations
--	-------------------	---------	------------------	-------------	-----------------

With the construction of the second DESN at Runnymede TS (completed in 2018) and the second DESN at Horner TS (planned to be in-service by 2022), there will be adequate transformer station capacity over the study period.

6.5 Longer Term Outlook (2030-2040)

While the RIP was focused on the 2019-2029 period, the Study Team has also looked at longer-term loading between 2030 and 2040. The results indicate that the following facilities may be overloaded or reach capacity over this period.

- Manby West TS 230/115 kV autotransformers, which is limited by the lowest rated unit T12 in the fleet. T12 autotransformer replacement, planned to be completed by 2025, is expected to relieve this constraint.
- Leaside TS 230/115 kV autotransformers. This capacity need is based on the assumption that two of the three units at Portlands Energy Centre GS are out-of-service, and total plant generation is 160 MW. Post-contingency control action is currently available to resolve this issue by transferring Dufferin TS to Manby supply. Refer to Appendix D of 2019 Toronto IRRP ("Planning Study Results") for more details.
- Table 6.3 and 6.4 provide the adequacy summary of the transmission circuits and transformer stations potentially requiring relief within the 2030-2040 period.

Facilities	Area	MW Lo	ad ⁽¹⁾	MW Load Meeting	Limiting	Limiting	Need Date
Facilities	2030	2035	2040	Capability	Element	Contingency	Neeu Date
115 kV Leaside TS x Wiltshire TS corridor	309	332	342	340	L15	L14W	2035-2040
115 kV Manby W TS x Riverside Jct. corridor	487	517	547	510	K13J	H2JK	2030-2035

Table 6-3: Longer Term Adequacy of Transmission Facilities

(1) The sum of station's coincident summer peak load adjusted for extreme weather, excluding energy-efficiency savings, assuming normal supply configuration, without load transfer

Facilities	Statio	n MW L	oad (1)	Station Limited Time Rating (LTR)	Need Date	
racinues	2030	2035	2040	MW		
Fairbank TS	182	188	193	182	2030-2035	
Sheppard TS	203	216	224	204	2030-2035	
Strachan TS	167	182	193	169	2030-2035	
Basin TS	85	91	95	88	2030-2035	

Table 6-4: Longer Term Adequacy of Step-Down Transformer Stations

(1) Station's non-coincident summer peak load, adjusted for extreme weather, excluding energy-efficiency savings

7 REGIONAL NEEDS AND PLANS

THIS SECTION DISCUSSES ELECTRICAL INFRASTRUCTURE NEEDS IN THE TORONTO REGION AND SUMMARIZES THE PLANS DEVELOPED TO ADDRESS THESE NEEDS.

This section outlines and discusses electrical infrastructure needs in the Toronto Region and plans to address these needs. The electrical infrastructure needs in the Toronto Region are summarized below in Table 7.1 and Table 7.2. Except for the Richview to Manby Reinforcement, these needs are primarily associated with the replacement of end-of-life equipment.

Section	Facilities	Need	Timing
7.1	Main TS	End-of-life of transformers T3 and T4	2021
7.2	H1L/H3L/H6LC/H8LC	End-of-life of overhead line section between Leaside 34 Jct. & Bloor St. Jct.	2023
7.3	L9C/L12C	End-of-life of overhead line section between Leaside TS & Balfour Jct.	2023
7.4	C5E/C7E	End-of-life underground cables between Esplanade TS & Terauley TS	2024
7.5	Richview TS to Manby TS 230 kV Corridor	Additional load meeting capability upstream of Manby TS (Richview TS to Manby TS 230 kV corridor)	2023
7.6	Manby TS	End-of-life of autotransformers T7, T9, T12, step-down transformer T13, and the 230 kV switchyard at Manby TS	2025
7.7	Bermondsey TS	End-of-life of transformers T3, T4 at Bermondsey TS	2025
7.8	John TS	End-of-life of T1, T2, T3, T4, T5, T6 transformers, 115 kV breakers, and LV switchgear at John TS	2026

Table 7-1: Identified Near and Mid-Term Needs in Toronto Region

	Table 7-2. Identified Long-Term Accus in Toronto Region							
Section	Facilities	Need	Timing					
7.9.1	Fairbank TS	Station capacity exceeded	2030-2035					
7.9.2	Sheppard TS	Station capacity exceeded	2030-2035					
7.9.3	Strachan TS	Station capacity exceeded	2030-2035					
7.9.4	Basin TS	Station capacity exceeded	2030-2035					
7.9.5	115 kV Manby W TS x Riverside Jct. corridor	Manby TS x Riverside Jct section of circuit K13J overloaded for circuit H2JK contingency	2030-2035					
7.9.6	Manby W TS Autotransformers	Autotransformer T12 overloaded for T1 or T2 contingency	2030-2035					
7.9.7	115 kV Leaside TS x Wiltshire TS corridor	Leaside TS to Balfour Jct. section of circuit L15 overloaded for circuit L14W contingency	2035-2040					
7.9.8	Leaside TS Autotransformers	Autotransformer T16 overloaded for circuit C15L or C17L contingency, assuming 160 MW at Portlands GS	2035-2040					

Table 7-2: Identified Long-Term Needs in Toronto Region

7.1 Main TS: End-of-Life Transformers

7.1.1 Description

Main TS is a 115/13.8 kV transformer station serving the eastern part of Central Toronto including the Beaches and Danforth area. The station is electrically situated within the Leaside 115 kV zone, supplied via 115 kV circuits H7L/H11L (see Figure 7-1). Peak demand at Main TS has been on average 59 MW over the last 3 years and is expected to increase to 62 MW over the next 10 years.

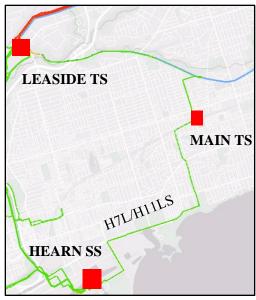


Figure 7-1: Main TS

The two transformers at Main TS (T3 and T4) are 46-51 years old 75 MVA units and are reaching their end-of-life. In addition, other equipment in the station, such as 115 kV line disconnect switches, current and voltage transformers, are also reaching their end-of-life.

7.1.2 Alternatives and Recommendation

The following alternatives were considered to address Main TS end-of-life assets need:

- 1. Alternative 1 Maintain Status Quo: This alternative was considered and rejected as it does not address the risk of failure due to asset condition and would result in increased maintenance expenses and will not meet Hydro One's obligation to provide reliable supply to the customers.
- 2. Alternative 2 Replace with similar type and size equipment as per current standard: Under this alternative the existing transformers at Main TS are replaced with new 115/13.8 kV transformers. This alternative would address the end-of-life assets need and would maintain reliable supply to the customers in the area.
- **3.** Alternative 3 Converting Main TS to 230 kV operation: This alternative would require replacing the existing transformers with new 230/13.8kV transformers and building a new 230kV supply to Main TS from either Warden TS or Leaside TS. The existing H7L/H11L circuits cannot be used as they are required for Hearn TS x Leaside TS use. This alternative is significantly more costly (3-4 times) compared to Option 2 as it would require building the new 230 kV supply in addition to replacing the transformers. It was therefore not considered further.
- 4. Alternative 4 Supplying Main TS switchgear from new transformers at Warden TS: Under this alternative instead of replacing the existing aging transformers at Main TS, new 230/13.8 kV transformers will be installed at Warden TS, a 230/27.6 kV transformer station located approximately 4.5 km north-east of Main TS. This alternative is significantly more (3-4 times) costly compared to Option 2 due to the excessive amount of distribution cables required to connect the transformers at Warden TS to the switchgear at Main TS. It was therefore not considered further.

The Study Team recommends Alternative 2 as the technically preferred and most cost-effective alternative to refurbish Main TS. Further given the longer term potential for growth; need to provide system resiliency and flexibility; and insignificant incremental cost difference between 45/75 MVA and 60/100 MVA transformers, the Study Team recommends that Hydro One replace the existing transformers with larger 60/100 MVA units. The plan cost is estimated to be about \$33 million, and is expected to in-service by end 2021.

7.2 H1L/H3L/H6LC/H8LC: End-of-Life Overhead Section (Leaside 34 Jct. to Bloor St. Jct.)

7.2.1 Description

The 115 kV circuits H1L/H3L/H6LC/H8LC provide connections between Leaside TS, Hearn SS, and Cecil TS, and supply transformer stations in the eastern part of central Toronto including Gerrard TS, Carlaw TS, and Basin TS. Based on their asset condition, conductors along the overhead section between Leaside 34 Jct. and Bloor St. Jct. are determined to be approaching their end-of-life. Figure 7.2 shows the location of the end-of-life section.

Figure 7-2: H1L/H3L/H6LC/H8LC Section between Leaside 34 Jct. and Bloor St. Jct.

7.2.2 Alternatives and Recommendation

The following alternatives were considered to address the end-of-life assets need:

- 1. Alternative 1 Maintain Status Quo: This alternative is rejected as it does not address the risk of failure due to asset condition and would result in increased maintenance expenses and reduce supply reliability to the customers.
- 2. Alternative 2 Refurbish the end-of-life overhead section as per current standard: Under this alternative the existing end-of-life overhead section will be refurbished and the conductor will be replaced with largest size possible while retaining existing tower structures. This alternative addresses the end-of-life assets need, minimizes losses and maintains reliable supply to the customers in the area.
- **3.** Alternative 3 Replace and rebuild line for future 230 kV operation: Under this alternative the line would be rebuilt to 230kV standards so as to be able for future 230kV operation. This alternative would be significantly more costly than Alternative 2 and with no plans to utilize the line at the higher operating voltage, was rejected and not considered further.

The Study Team recommends that Hydro One proceed with Alternative 2 – the refurbishment of the endof-life overhead section. The line refurbishment work is expected to be complete by 2023.

7.3 L9C/L12C: End-of-Life Overhead Section (Leaside TS to Balfour Jct.)

7.3.1 Description

The overhead section of 115 kV double circuit line L9C/L12C between Leaside TS and Balfour Jct. is over 80 years old and has been determined to be approaching its end-of-life. Figure 7.3 shows the location of the end-of-life section.

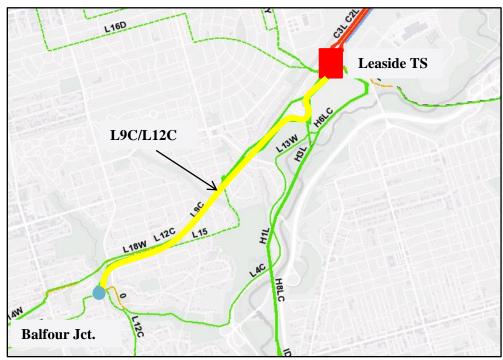


Figure 7-3: L9C/L12C Section between Leaside TS and Balfour Jct.

7.3.2 Alternatives and Recommendation

The following alternatives are considered to address the end-of-life assets need:

- 1. Alternative 1 Maintain Status Quo: This alternative is rejected as it does not address the risk of failure due to asset condition and would result in increased maintenance expenses and reduce supply reliability to the customers.
- 2. Alternative 2 Refurbish the end-of-life overhead section as per current standard: Refurbish the end-of-life overhead section and replace conductors with the largest size possible while retaining existing tower structures. This alternative is recommended as it addresses the end-of-life assets need and maintains reliable supply to the customers in the area.

The Study Team recommends that Hydro One proceed with Alternative 2 – the refurbishment of the endof-life overhead section of L9C/L12C between Leaside TS and Balfour Jct. The line refurbishment work is planned to be completed by 2023.

7.4 C5E/C7E: End-of-Life Underground Cables (Esplanade TS to Terauley TS)

7.4.1 Description

Circuits C5E and C7E between Esplanade TS to Terauley TS are 115 kV paper insulated low pressure oil filled underground transmission cables that provide a critical 115 kV supply to Toronto's downtown core and are partially routed along Lake Ontario.

These circuits, put into service in 1959, are among the oldest cable circuits in the Hydro One's transmission system. Based on condition test results, the cable jackets and paper insulation were found to be in deteriorated condition which can lead to overheating, oil leaks, and cable failure. Figure 7.3 shows the location of the end-of-life section.

Figure 7-4: C5E/C7E Underground Cable Section between Esplanade TS and Terauley TS

7.4.2 Alternatives and Recommendation

The following alternatives were considered to address the end-of-life assets need:

- 1. Alternative 1 Maintain Status Quo: This alternative is rejected as it does not address the risk of failure due to asset condition. Failure to these cables can impact the power supply to critical facilities in Downtown Toronto. A large oil leak would have significant environmental impact and require costly environmental remediation.
- 2. Alternative 2 Replace with similar type and size equipment as per current standard: Under this alternative, the existing cables will be replaced with new 230 kV rated cables. The 230 kV rated cables have higher insulation and are less prone to failure. This alternative is recommended as it addresses the end-of-life assets need and maintains reliable supply to the customers in the area.

The Study Team recommends that Hydro One proceed with Alternative 2 – the replacement of the end-oflife underground cables between Esplanade TS and Terauley TS. Hydro One is currently proceeding with detailed estimation of options including tunneling for evaluating the most appropriate routes and construction options. This will be an input for public consultations to obtaining permit and necessary approvals along with environmental assessments. A final route and installation option will be selected as part of the open EA process. The cable refurbishment work is planned to be completed by 2024.

7.5 Richview TS to Manby TS 230 kV Corridor

7.5.1 Description

The 230 kV transmission corridor between Richview TS and Manby TS is the main supply path for the Western Sector of Central Toronto. Along this corridor there are two double-circuit 230 kV lines R1K/R2K and R13K/R15K. Together with circuit R24C between Richview TS and Cooksville TS, this corridor also supplies the load in the southern Mississauga and Oakville areas via Manby TS. The first cycle Metro Toronto Regional Infrastructure Plan has identified the need to increase transfer capability of this transmission corridor to support the continuous load growth in these areas.

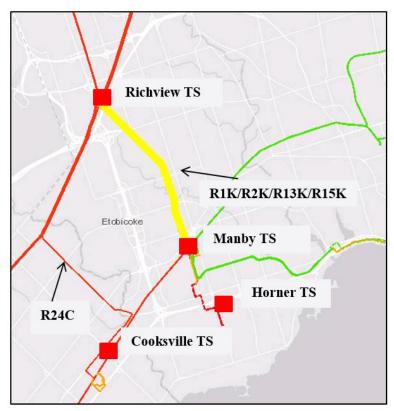


Figure 7-5: Richview TS to Manby TS 230 kV Corridor

7.5.2 Alternatives and Recommendation

A detailed assessment of the Richview TS to Manby TS corridor need was carried out in the Appendix F of the Toronto IRRP to reconfirm the capacity need of this corridor based on the changes in assumptions and the up-to-date load forecast. The assessment confirmed the need, and the Study Team continues to recommend that the reinforcement of the Richview TS to Manby TS 230 kV circuits to be completed as soon as possible.

Evaluation of alternatives was completed by the Study Team as documented in the 2015 Toronto Regional Infrastructure Plan. As per the Study Team's recommendation, Hydro One is proceeding with the Richview TS to Manby TS 230 kV transmission reinforcement project, which will be carried out in two phases:

• **Phase 1:** This phase covers rebuilding the existing idle 115 kV overhead line on the transmission corridor between Richview TS and Manby TS to 230 kV standards. The new line will operate in parallel with the existing four 230 kV circuits from Richview TS to Manby TS, which will initially be reconfigured to create two "supercircuits." This configuration avoids the need to build new terminations and new breakers at Manby TS. The IRRP noted the need for Phase 1 is in 2021 but the expected in-service is Q4 2023. Figure 7-6 below shows the transmission configuration after Phase 1 is completed.

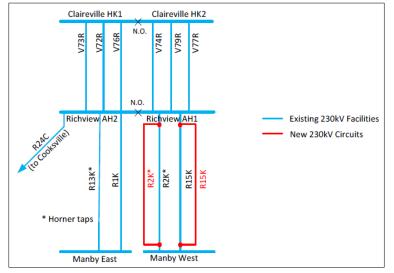


Figure 7-6: Richview TS to Manby TS 230 kV Corridor – Phase 1

i. Phase 2: In the second phase the super circuits will be unbundled with one new circuit connected to Manby West and one to Manby East with new termination installed at Manby TS. At Richview TS, the new circuits will be tapped to existing 230 kV circuits V73R and V79R from Claireville TS. This configuration allows Richview TS to be bypassed and permits continued supply to Manby TS should there be an emergency at Richview TS. The timing of Phase 2 will be planned to coincide with Manby TS end of life refurbishment, all of which is planned to be complete by 2025. Figure 7-7 below shows the transmission configuration after Phase 2 is completed. Note that the nomenclature shown for the new circuits are for illustrative purposes only and subject to change.

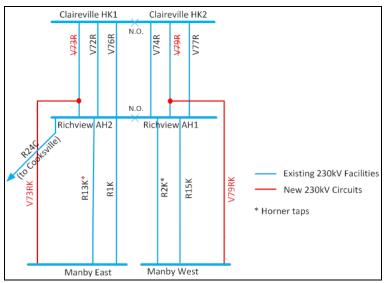


Figure 7-7: Richview TS to Manby TS 230 kV Corridor – Phase 2

7.6 Manby TS: End-of-Life Transformers and 230 kV Switchyard

7.6.1 Description

Manby TS is a major bulk electric switching and autotransformer station in the Toronto region. Station facilities include the Manby West and Manby East 230 kV and 115 kV switchyards, six 230/115 kV autotransformers (T1, T2, T7, T8, T9, T12), and six 230/27.6 kV step-down transformers supplying three DESNs (T3/T4, T5/T6, T13/T14).

The Manby TS autotransformers T7, T9, and T12 and step down transformer T13 are about 50 years old and all four have been identified to be nearing the end of their useful life and require replacement in the next 5 years. All three DESNs at Manby TS are currently at capacity, and the new second DESN at nearby Horner TS (I/S 2022) is expected to pick-up the load growth in the area.

The 230 kV oil breakers have also been identified to be nearing end-of-life and require replacement over the next 5-year period. As part of breaker replacement work, the 230 kV Manby West and Manby East switchyards will be modified and an additional three breakers added to terminate the two new circuits to Richview TS described above in Section 7.5 under Phase 2 for the Richview TS to Manby TS corridor reinforcement.

Figure 7-8: Manby TS

7.6.2 Alternatives and Recommendation

The following alternatives were considered to address the end-of-life assets need:

- 1. Alternative 1 Maintain Status Quo: This alternative is rejected as it does not address the risk of failure due to asset condition and would result in increased maintenance expenses and reduce supply reliability for customers.
- 2. Alternative 2 Replace the end-of-life transformers with similar type and size equipment as per current standard, and rebuild/modify the 230 kV switchyard: This alternative involves the replacement of Manby East T7, T9, and Manby West T12 autotransformers with 250 MVA unit; Manby T13 DESN transformers with 75/93 MVA unit; replacement of end-of-life 230 kV oil breakers; as well as 230 kV switchyard modification and installing three new breakers to accommodate the new circuits to Richview TS (as part of the Richview TS to Manby TS Corridor Reinforcement). This alternative is recommended as it addresses the end-of-life asset needs and maintains reliable supply to customers in the area by:
 - reducing the risk of breaker failure events at Manby TS;
 - providing relief to the autotransformer capacity constraints in the long-term at Manby West TS by replacing the lowest rated unit T12; and
 - connecting the new circuits to Richview TS to support the continuous load growth in these areas.

The Study Team recommends that Hydro One proceed with Alternative 2 – the end-of-life transformer replacement and rebuilding of the Manby TS 230 kV switchyard. The project is expected to be completed by 2025.

7.7 Bermondsey TS: End-of-Life Transformers

7.7.1 Description

Bermondsey TS along with Ellesmere TS, Scarborough TS, Sheppard TS and Warden TS supply the Scarborough area and comprises of two DESNs. The T1/T2 DESN was built in 1990, has 6 feeders, an LTR

of 185.8 MW and supplied a summer 2018 peak load of 43 MW. The T3/T4 DESN was built in 1965, has 12 feeders, an LTR of 162.5 MW and supplied a 2018 summer peak load of 117 MW.

The T3 and T4 transformers are about 55 years old, have been identified as nearing the end of their useful life and requiring replacement in the next 5 years.

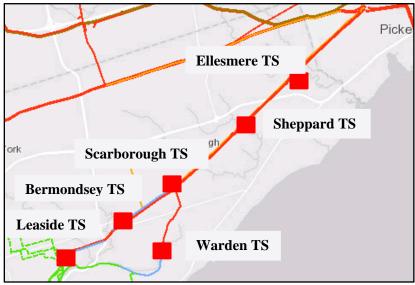


Figure 7-9: Bermondsey TS and Surrounding Stations

7.7.2 Alternatives and Recommendation

The recommendation for the end of life replacement is as follows:

- 1. Alternative 1 Maintain Status Quo: This alternative is rejected as it does not address the risk of failure due to asset condition and would result in increased maintenance expenses and reduce supply reliability to the customers.
- 2. Alternative 2 Decommission the T3/T4 DESN at its end-of-life: This alternative is not viable as there would be insufficient feeder capacity to supply the existing load. It was not considered further.
- **3.** Alternative 3 Downsize (replace with smaller 83 MVA transformers): This alternative would require extensive feeder transfers, and reconfiguration of the station including addition of new feeders on the T1/T2 DESN. The cost of the station reconfiguration work is expected to exceed \$5M and significantly exceeds the \$500-600k cost savings resulting from using the smaller size transformers.
- 4. Alternative 4 Replace with similar type and size equipment as per current standard: This alternative is recommended as this is the most cost effective option, and addresses the end-of-life assets need and maintains reliable supply to the customers in the area.

Considering above options, the Study Team recommends that Hydro One proceed with Alternative 4 – the refurbishment of the T3/T4 DESN of Bermondsey TS and build to current standard. The refurbishment plan is expected to be in-service by 2025.

7.8 John TS: End-of-Life Transformers, 115 kV Breakers, and LV Switchgear

7.8.1 Description

John TS (also referred to as Windsor TS) is connected to the 115 kV Manby West system and supplies the western half of City of Toronto's downtown district. Station facilities include a 115 kV switchyard and six 115/13.8 kV step-down transformers (T1, T2, T3, T4, T5, T6) supplying six Toronto Hydro low voltage metalclad switchgears. The summer 10-day LTR is 311 MW. The station's 2018 actual non-coincident summer peak load (adjusted for extreme weather) was about 261 MW.

Figure 7-10: John TS

The T1 and T4 step-down transformers at John TS, both over 50 years old and in poor condition, were replaced in 2019. The step down transformers (T2, T3, T5 and T6) which range in age from 44-50 years are also at, or nearing, end of life. It is expected that these transformers will need to be replaced in the next 3-5 years. The 115 kV breakers are mostly oil type and are about 44 years old. They are also nearing end of useful life and are expected to require replacement in the next 5-10 years.

Toronto Hydro has also identified the need for renewal of their switchgear facilities at John TS. This work will be done over multiple phases and is expected to take 20-25 years to fully complete. The first phase involves relocating the feeders from switchgear at John TS to new switchgear at Copeland MTS so as to permit of the replacement of switchgear at John TS. The presence of Copeland MTS, which went into service in 2019, enables the switchgear replacement due to the capacity (transformation and feeder positions) at Copeland MTS that are not available at John TS or other neighboring stations. The load transfer to Copeland MTS is necessary to reduce load at John TS to facilitate the transformer and switchgear replacement work at John TS.

Toronto Hydro plan to initiate the switchgear renewal process starting with the Windsor Station A5-A6 and the A3-A4 metalclad switchgear buses. These buses are expected to be replaced by the new A19-A20 bus

in 2022-2023 and later followed by A21-A22 bus. Hydro One will replace associated low voltage transformer breaker disconnect switches and cables in coordination with Toronto Hydro.

7.8.2 Alternatives and Recommendation

The following alternatives were considered to address the end-of-life assets need:

- 1. Alternative 1 Maintain Status Quo: This alternative is rejected as it does not address the risk of failure due to asset condition and would result in increased maintenance expenses and reduce supply reliability to the customers.
- 2. Alternative 2 Reducing the Number of Transformers from Six to Four Units: As part of the John TS refurbishment work and the consequent reduction in loading at the station, Hydro One investigated the opportunity for reducing the number of 115/13.8 kV transformer units at John TS from the current six units to four units. Hydro One assessed with Toronto Hydro the feasibility of the following two options:
 - i. Reducing the number of switchgear pairs in the station from the current six to four to match the supply from four transformers. The assessment concluded that Copeland MTS has only enough feeder positions available to pick up one bus (typically 14-16 feeders) from John TS, and therefore there are no additional feeder positions available at Copeland MTS to further eliminate another bus at John TS. As such this option is not feasible.
 - ii. Reducing the number of transformer supply points to the existing six switchgear pairs through switchgear bus bundling (while not reducing the number of feeder positions at the station). This involved looking at opportunities of electrically joining presently distinct switchgear pairs while at the same time respecting equipment ratings. No opportunities were found that would respect equipment ratings. If opportunities that would respect equipment ratings had been found these would then be reviewed based upon operational factors involving customers impacted by a contingency, restoration times, etc. A first review of these operational factors found that Toronto Hydro's ability to perform bus load transfers would be limited than what it is today and its restoration times would be lengthened compared to what exists today due to the increased concentration of customers per bus. Given the lack of opportunities and the negative operational impacts even if opportunities were to be found, this option is not feasible.
 - iii. Consistent with the IRRP load forecast, Toronto Hydro has cited continued electricity demand along with higher reliability from customers for new connections to its distribution system in the downtown core. The growth in new connections coupled with Toronto Hydro's distribution system for reliable service is leading to the demand for feeder positions outpacing the peak demand growth. Six switchgear pairs along with six transformer supply points are still required for John/Windsor TS.

Based on the findings of above assessments, this alternative is not viable as Toronto Hydro feeder requirements are such that all of the six transformers are needed to supply load in the area via the six pairs of Toronto Hydro buses as described above.

3. Alternative **3** - Similar Connection Arrangement with 60/100 MVA Transformers: This alternative is recommended as it addresses the end-of-life assets need and maintains reliable supply

to the customers in the area. This alternative involves the replacement of the remaining T2, T3 (45/75 MVA), and T5, T6 (75/125 MVA) transformers with 60/100 MVA units, replacement of the LV switchgear in coordination with Toronto Hydro, and replacement of the existing oil filled breakers with SF6 breakers in the 115 kV switchyard. Minor modifications may be made (to the extent practically possible) to improve operational flexibility under outage conditions. Several options as described below were considered into the scope of the John TS refurbishment:

- i. Downsize (replace with smaller size transformers): The renewal of John TS switchgear facilities is expected to be completed over multiple phases within the next 20-25 years. Over this time period, the load of an existing switchgear will be transferred from one transformer winding pairs to another to connect to the new switchgear. Since some of the switchgear is heavily loaded, all of the transformer windings should be able to handle the maximum load of a single switchgear (i.e., 3000 Amps). For this reason, downsizing of John TS transformers is not viable.
- ii. Rebuild/reconfigure the 115 kV switchyard to a "Breaker-and-Half" configuration: The existing 115 kV breakers and buses are currently arranged in a ring-bus configuration and consideration was given to rebuilding and reconfiguring the 115 kV switchyard using a breaker and half arrangement. However, this alternative is not viable due to physical space constraints and clearances required for equipment and personnel safety. Although, practically constrained, this option will also require rerouting and retermination of high voltage cables and the cost of investment required for this reconfiguration significantly outweigh the incremental benefits.

The Study Team therefore recommends that Hydro One to proceed with Alternative 3 as described above. The John TS refurbishment plan is expected to be in service by 2026.

7.9 Long-Term Capacity Needs

A number of longer term capacity needs have been identified as described in Section 6.5 and Table 7.2. The Study team recommends that these needs be monitored and evaluated in future planning cycles. No investment is required at this time due to the forecast uncertainty and the longer-term timing of need. Preliminary comments are given below.

7.9.1 Fairbank TS Capacity Need

Fairbank TS load is expected to exceed LTR within the 2030-2035 time period. Consideration may be given to load transfer to the neighboring Runnymede TS. The Study Team recommends reviewing the loading in the next planning cycle.

7.9.2 Sheppard TS Capacity Need

Sheppard TS is also forecast to exceed capacity within the 2030-2035 time period. Consideration may be given to utilizing the idle winding on transformers T1/T2. The Study Team recommends reviewing the loading in the next planning cycle.

7.9.3 Strachan TS Capacity Need

Strachan TS is forecast to exceed capacity within the 2030-2035 time period. Consideration maybe given to provide relief to Strachan TS through permanent load transfers to Copeland MTS and/or John TS. The Study Team recommends reviewing the loading in the next planning cycle.

7.9.4 Basin TS Capacity Need

Basin TS is located in the Portlands area in Downtown Toronto. The need for additional capacity at Basin TS is expected to arise in the long-term (within the 2030-2035 time period). The timing of the need is dependent on the pace of development in the area. Physical space is available at the current Basin TS site to plan and build a second DESN to meet long term needs.

The City of Toronto is planning the re-development of the Portlands. The area may see additional load beyond that which has been included in the present forecasts. The timing of any new needs will depend upon the timing of the City's plan.

However, the City's current re-development plans will end the continued operation of Basin TS and several high voltage lines in their current locations in the Portlands. This will significantly impact both Hydro One infrastructure and Toronto Hydro infrastructure within and outside of Basin TS. No sites for a replacement transformer station or high voltage line routes have been identified by the City.

Hydro One and Toronto Hydro have requested the City to revise its plans so as to avoid the conflicts with Basin TS and high voltage lines. Hydro One and Toronto Hydro have also joined others in a legal appeal of the City's land plans.

Given the appeal and lack of information currently available to Hydro One and Toronto Hydro from the City, the Study Team recommends that Hydro One and Toronto Hydro continue to monitor the situation and update the Study Team as appropriate. Plans for supplying the Portlands area will be developed as more information becomes known.

7.9.5 Manby West TS to Riverside Jct. Corridor Capacity Need

The Manby TS x Riverside Jct. section of K13J/K14J is potentially overloaded under certain contingency conditions within the 2030-2035 time period. Consideration may be given to reconductor circuit with a higher ampacity conductor. The Study Team recommends reviewing the loading in the next planning cycle.

7.9.6 Manby West TS Autotransformers T12 Capacity Need

Manby West TS 230/115 kV autotransformers is restricted by the lowest rated unit T12 in the fleet, and is potentially overloaded within the 2030-2035 time period, following T1 or T2 contingency. T12 autotransformer replacement, planned to be completed by 2025, is expected to provide relieve to this constraint and meet the capacity requirement at Manby West TS autotransformers facility. See Section 7.5 for more details.

7.9.7 Leaside TS to Wiltshire TS Corridor Capacity Need

The Leaside TS x Balfour Jct. section of the underground 115 kV circuit L15, connecting Leaside TS and Wiltshire TS, is potentially overloaded in the long-term within the 2035-2040 time period. The Study Team determines that no further investment is required to address this need at this time due to the level of uncertainties and amount of lead time available. This need will be reevaluated in the next planning cycle.

7.9.8 Leaside TS Autotransformers T16 Capacity Need

Leaside TS autotransformer T16 is potentially overloaded in the long-term within the 2035-2040 time period, following circuit C15L or C17L contingency, assuming that two of the three units at Portlands Energy Centre GS are out-of-service, and total plant generation is 160 MW. Post-contingency control action is currently available to resolve this issue by transferring Dufferin TS to Manby supply. The Study Team determines that no further investment is required to address this need at this time due to the level of forecast uncertainty and amount of lead time available. The Study Team recommends reviewing the loading in the next planning cycle.

8 CONCLUSIONS AND NEXT STEPS

THIS REGIONAL INFRASTRUCTURE PLAN CONCLUDES THE REGIONAL PLANNING PROCESS FOR THE TORONTO REGION.

The major infrastructure investments recommended by the Study Team in the near and mid-term planning horizon are provided in Table 8-1 below, along with their planned in-service date and budgetary estimates for planning purpose.

No.	Need	Recommended Action Plan	Planned I/S Date	Budgetary Estimate ⁽¹⁾
1	Main TS: End-of-life of transformers T3/T4	Replace the end-of-life transformers with similar type and size equipment as per current standard	2021	\$33M
2	H1L/H3L/H6LC/H8LC: End-of- life of Leaside Jct. to Bloor St. Jct. overhead section	Refurbish the end-of-life H1L/H3L/ H6LC/H8LC section	2023	\$11M
3	L9C/L12C: End-of-life of Leaside TS to Balfour Jct. overhead section	Refurbish the end-of-life L9C/L12C section	2023	\$3M
4	C5E/C7E: End-of-life of underground cables between Esplanade TS and Terauley TS	Replace the end-of-life C5E/C7E cables	2024	\$128M
5	Richview TS to Manby TS 230 kV Corridor Reinforcement	Replace existing idle 115 kV double circuit line with new 230 kV double circuit line between Richview TS and Manby TS	2023	\$21M
6	Manby TS: End-of-life of autotransformers (T7, T9, T12), step-down transformer (T13), and the 230 kV switchyard	Replace the end-of-life transformers with similar type and size equipment as per current standard, and refurbish/reconfigure Manby 230 kV switchyard	2025	\$85M
7	Bermondsey TS: End-of-life of transformers T3/T4	Replace the end-of-life transformers with similar type and size equipment as per current standard	2025	\$27M
8	John TS: End-of-life of transformers (T1, T2, T3, T4, T5, T6), 115 kV breakers, and LV switchgear Budgetary estimates are provided for F	Replace with similar type and size equipment as per current standard	2026	\$102M

Table 8-1: Recommended Plans in Toronto Region over the Next 10 Years

(1) Budgetary estimates are provided for Hydro One's portion of the work

The Study Team recommends that:

- Hydro One to continue with the implementation of infrastructure investments listed in Table 8-1 while keeping the Study Team apprised of project status;
- All the other identified needs/options in the long-term will be further reviewed by the Study Team in the next regional planning cycle.

9 REFERENCES

[1] Metro Toronto Regional Infrastructure Plan (2016) <u>https://www.hydroone.com/abouthydroone/CorporateInformation/regionalplans/metrotoronto/Do</u> <u>cuments/RIP%20Report%20Metro%20Toronto.pdf</u>

- [2] Toronto Region Needs Assessment (2017) <u>https://www.hydroone.com/abouthydroone/CorporateInformation/regionalplans/metrotoronto/Do</u> <u>cuments/Needs%20Assessment%20-%20Toronto%20Region%20-%20Final.pdf</u>
- [3] Toronto Region Scoping Assessment (2018) <u>http://www.ieso.ca/-/media/Files/IESO/Document-Library/regional-planning/Toronto/Toronto-Scoping-Assessment-Outcome-Report-February-2018.pdf?la=en</u>
- [4] Toronto Integrated Regional Resource Plan (2019) <u>http://www.ieso.ca/-/media/Files/IESO/Document-Library/regional-</u> planning/Toronto/engagement/Toronto-IRRP-20190809-Report.pdf?la=en
- [5] Toronto Integrated Regional Resource Plan Appendices (2019) <u>http://www.ieso.ca/-/media/Files/IESO/Document-Library/regional-</u> planning/Toronto/engagement/Toronto-IRRP-Appendices.pdf?la=en

APPENDIX A. STATIONS IN THE TORONTO REGION

Station (DESN)	Voltage (kV)	Supply Circuits
Agincourt TS T5/T6	230/27.6	C4R/C10A
Basin TS T3/T5	115/13.8	H3L/H1L
Bathurst TS T1/T2	230/27.6	P22R/C18R
Bathurst TS T3/T4	230/27.6	P22R/C18R
Bermondsey TS T1/T2	230/27.6	C17L/C14L
Bermondsey TS T3/T4	230/27.6	C17L/C14L
Bridgman TS T11/T12/T13/T14/T15	115/13.8	L13W/L15/L14W
Carlaw TS T1/T2	115/13.8	H1L/H3L
Cecil TS T1/T2	115/13.8	Cecil Buses H & P
Cecil TS T3/T4	115/13.8	Cecil Buses P & H
Charles TS T1/T2	115/13.8	L4C/L9C
Charles TS T3/T4	115/13.8	L12C/L4C
Dufferin TS T1/T3	115/13.8	L13W/L15
Dufferin TS T2/T4	115/13.8	L13W/L15
Duplex TS T1/T2	115/13.8	L16D/L5D
Duplex TS T3/T4	115/13.8	L5D/L16D
Ellesmere TS T3/T4	230/27.6	C2L/C3L
Esplanade TS T11/T12/T13	115/13.8	H2JK/H10EJ(C5E)/H9EJ(C7E)
Fairbank TS T1/T3	115/27.6	K3W/K1W
Fairbank TS T2/T4	115/27.6	K3W/K1W
Fairchild TS T1/T2	230/27.6	C18R/C20R
Fairchild TS T3/T4	230/27.6	C18R/C20R

Station (DESN)	Voltage (kV)	Supply Circuits
Finch TS T1/T2	230/27.6	C20R/P22R
Finch TS T3/T4	230/27.6	P21R/C4R
Gerrard TS T1/T3/T4	115/13.8	H3L/H1L
Glengrove TS T1/T3	115/13.8	D6Y/L2Y
Glengrove TS T2/T4	115/13.8	D6Y/L2Y
Horner TS T3/T4	230/27.6	R13K/R2K
John TS T1/T2/T3/T4	115/13.8	John Buses K1 & K2 & K3 & K4
John TS T5/T6	115/13.8	John Buses K1 & K4
Leaside TS T19/T20/T21 13.8	230/13.8	C2L/C3L/C16L
Leaside TS T19/T20/T21 27.6	230/27.6	C2L/C3L/C16L
Leslie TS T1/T2 13.8	230/13.8	P21R/C5R
Leslie TS T1/T2 27.6	230/27.6	P21R/C5R
Leslie TS T3/T4	230/27.6	P21R/C5R
Main TS T3/T4	115/13.8	H7L/H11L
Malvern TS T3/T4	230/27.6	C4R/C5R
Manby TS T13/T14	230/27.6	Manby W Buses A1 & H1
Manby TS T3/T4	230/27.6	Manby W Buses A1 & H1
Manby TS T5/T6	230/27.6	Manby E Buses H2 & A2
Rexdale TS T1/T2	230/27.6	V74R/V76R
Richview TS T1/T2	230/27.6	Richview Buses H1 & A1
Richview TS T5/T6	230/27.6	V74R/V72R
Richview TS T7/T8	230/27.6	Richview Buses H2 & A2
Runnymede TS T3/T4	115/27.6	K12W/K11W

Station (DESN)	Voltage (kV)	Supply Circuits
Scarboro TS T21/T22	230/27.6	C14L/C2L
Scarboro TS T23/T24	230/27.6	C15L/C3L
Sheppard TS T1/T2	230/27.6	C16L/C15L
Sheppard TS T3/T4	230/27.6	C15L/C16L
Strachan TS T12/T14	115/13.8	H2JK/K6J
Strachan TS T13/T15	115/13.8	K6J/H2JK
Terauley TS T1/T4	115/13.8	C7E/C5E
Terauley TS T2/T3	115/13.8	C7E/C5E
Warden TS T3/T4	230/27.6	C14L/C17L
Wiltshire TS T1/T6	115/13.8	K1W/K3W (Wiltshire Buses H1 & H3)
Wiltshire TS T2/T5	115/13.8	K1W/K3W (Wiltshire Buses H1 & H3)
Wiltshire TS T3/T4	115/13.8	K1W/K3W (Wiltshire Buses H1 & H3)
Cavanagh MTS T1/T2	230/27.6	C20R/C10A
IBM Markham CTS T1/T2	230/13.8	P21R/P22R
Markham MTS #1 T1/T2	230/27.6	P21R/P22R
Copeland MTS T1/T3 (Future)	115/13.8	D11J/D12J

APPENDIX B. TRANSMISSION LINES IN THE TORONTO REGION

Location	Circuit Designations	Voltage (kV)
Richview x Manby	R1K, R2K, R13K, R15K	230
Richview x Cooksville	R24C	230
Manby x Cooksville	K21C, K23C	230
Cherrywood x Leaside	C2L, C3L, C14L, C15L, C16L, C17L	230
Cherrywood x Richview	C4R, C5R, C18R, C20R	230
Cherrywood x Agincourt	C10A	230
Parkway x Richview	P21R, P22R	230
Claireville x Richview	V72R, V73R, V74R, V76R, V77R, V79R	230
Manby East x Wiltshire	K1W, K3W, K11W, K12W	115
Manby West x John	K6J, K13J, K14J	115
Manby West x John x Hearn	Н2ЈК	115
John x Esplanade x Hearn	D11J, D12J, H9DE, H10DE	115
Esplanade x Cecil	С5Е, С7Е	115
Hearn x Cecil x Leaside	H6LC, H8LC	115
Hearn x Leaside	H1L, H3L, H7L, H11L	115
Leaside x Bridgman x Wiltshire	L13W, L14W, L15, L18W	115
Leaside x Charles	L4C	115
Leaside x Cecil	L9C, L12C	115
Leaside x Duplex	L5D, L16D	115
Leaside x Glengrove	L2Y	115
Duplex x Glengrove	D6Y	115

APPENDIX C. DISTRIBUTORS IN THE TORONTO REGION

Distributor Name	Station Name	Connection Type					
	Agincourt TS	Тх					
	Basin TS						
	Bathurst TS	Тх					
	Bermondsey TS	Тх					
	Bridgman TS	Тх					
	Carlaw TS	Тх					
	Cecil TS	Tx					
	Charles TS	Тх					
	Dufferin TS	Тх					
	Duplex TS	Тх					
	Ellesmere TS	Тх					
	Esplanade TS	Тх					
	Fairbank TS	Тх					
	Fairchild TS	Тх					
	Finch TS	Тх					
	Gerrard TS	Тх					
	Glengrove TS	Тх					
Toronto Hydro-Electric System Limited	Horner TS	Тх					
	John TS	Tx					
	Leaside TS	Тх					
	Leslie TS	Тх					
	Main TS	Tx					
	Malvern TS	Тх					
	Manby TS	Тх					
	Rexdale TS	Тх					
	Richview TS	Тх					
	Runnymede TS	Тх					
	Scarboro TS	Тх					
	Sheppard TS	Тх					
	Strachan TS	Тх					
	Terauley TS	Тх					
	Warden TS	Тх					
	Wiltshire TS	Тх					
	Cavanagh MTS	Тх					
	Copeland MTS	Tx					

Distributor Name	Station Name	Connection Type
	Agincourt TS	Tx
	Fairchild TS	Tx
	Finch TS	Tx
Hydro One Networks Inc. (Dx)	Leslie TS	Tx
	Malvern TS	Тх
	Richview TS	Тх
	Sheppard TS	Tx
	Agincourt TS	Dx
	Fairchild TS	Dx
Alectra Utilities	Finch TS	Dx
	Leslie TS	Dx
	Richview TS	Dx
	·	·
Elavison Energy Inc.	Malvern TS	Dx
Elexicon Energy Inc.	Sheppard TS	Dx

Table D-1: Toronto IRRP Load Forecast, without the Impacts of Energy-Efficiency Savings

	Near & Mid-Term														Long-Term			
							Fore								Forecast			
	LTR																	
Area & Station	(MW)	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2035	2040		
North 230 kV																		
Agincourt TS	174	92	95	98	100	101	102	103	104	104	105	106	106	107	110	114		
Bathurst TS	334	210	220	226	229	231	233	235	236	238	239	242	245	247	265	274		
Cavanagh MTS	157	91	92	93	94	95	95	95	96	97	98	98	99	100	108	112		
Fairchild TS	346	235	237	239	241	243	245	247	249	250	250	252	254	255	260	265		
Finch TS	365	249	254	258	260	261	262	263	265	267	269	271	272	273	279	284		
Leslie TS	325	233	241	249	250	254	255	258	260	261	262	264	265	266	283	293		
Malvern TS	176	83	84	85	86	86	86	87	88	88	91	93	95	96	103	106		
East 230 kV																		
Bermondsey TS	348	148	152	154	156	159	160	161	162	164	164	165	165	165	166	172		
Ellesmere TS	189	124	126	128	129	130	131	131	132	133	133	134	134	134	135	138		
Leaside TS	202	151	156	160	163	164	165	165	167	168	168	169	169	169	171	178		
Scarboro TS	340	204	207	209	211	212	213	214	216	218	218	218	219	219	230	236		
Sheppard TS	205	141	144	146	148	148	150	151	153	153	153	156	159	161	171	177		
Warden TS	182	106	108	109	110	111	112	113	113	113	117	120	122	124	132	136		
West 230 kV																		
Horner TS	365	133	137	138	140	140	142	143	144	145	149	154	158	161	177	187		
Manby TS	226	191	202	205	211	212	215	216	217	219	220	222	224	226	240	251		
Rexdale TS	187	123	124	125	125	127	127	129	129	129	129	127	127	125	118	110		
Richview TS	460	227	213	217	219	220	222	223	224	226	224	222	219	218	213	204		
Leaside 115 kV																		
Basin TS	88	65	71	75	76	77	77	78	79	79	81	83	84	85	91	95		
Bridgman TS	212	154	154	156	157	157	160	161	161	162	163	164	165	167	180	186		
Carlaw TS	73	66	67	67	67	68	68	69	69	70	70	70	70	72	72	72		
Cecil TS	215	162	170	175	177	179	181	182	183	184	182	180	178	177	177	177		
Charles TS	211	145	151	154	155	156	158	158	159	159	161	164	166	167	175	176		
Dufferin TS	170	136	121	124	125	125	126	127	128	130	134	135	139	142	152	156		
Duplex TS	128	99	101	100	98	97	94	94	96	97	98	99	100	102	108	113		
Esplanade TS	187	162	142	145	146	146	148	148	149	150	149	147	146	143	147	148		
Gerrard TS	102	35	44	47	49	49	50	50	50	51	51	51	51	51	52	53		
Glengrove TS	88	48	50	50	51	51	51	51	51	51	52	54	55	56	60	62		
Main TS	77	56	57	57	58	59	59	59	60	60	62	62	63	64	65	65		
Terauley TS	249	175	188	194	190	188	188	191	191	191	190	187	185	184	181	182		
Manby E 115 kV																		
Fairbank TS	182	141	125	132	135	139	142	144	145	146	147	148	149	149	154	158		
Runnymede TS	219	96	136	141	143	143	146	146	148	148	149	149			158			
Wiltshire TS	133	55	71	72	72	72	73	73	73	75	75	76	76	76	83	86		
Manby W 115 kV																		
Copeland MTS	130	0	0	52	93	93	94	94	96	96	98	99	100		107	112		
John TS	314	263	266	215	201	202	203	204	206	206	210	212	215	218	228	242		
Strachan TS	169	139	143	145	146	147	147	149	149	150	155	159	163	167	182	193		

	Near & Mid-Term Forecast (MW)														ng-Te	
						Fo	recast	(MW)						Fore	cast (I	MW)
A		2010 (1)	2010	2020	2021	2022	2022	2024	2025	2026	2027	2020	2020	2020	2025	20.40
Area & Station North 230 kV	(MW)	2018 ⁽¹⁾	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2035	2040
	174	110	115	110	101	100	104	105	126	126	107	100	100	120	122	120
Agincourt TS	174	112	115	119	121	122	124	125	126	126	127	128	128	130	133	138
Bathurst TS	334	227 108	238 109	244 110	248 112	250 113	252 113	254 113	255 114	257 115	258 116	262 116	265 117	267 119	287 128	296 133
Cavanagh MTS	157											287				
Fairchild TS	346	268	270	272	274	277	279	281	284	285	285	287 316	289	290	296 325	302 331
Finch TS	365 325	290 233	296 241	301 249	303 250	304 254	305 255	306 258	309	311 261	313 262	264	317 265	318	525 283	293
Leslie TS									260					266		
Malvern TS	176	105	106	108	109	109	109	110	111	111	115	118	120	122	130	134
East 230 kV	249	1.0	1.6.4	1.00	1.0	171	172	172	175	177	177	170	170	170	170	100
Bermondsey TS	348	160	164	166	169	171	173	173	175	177	177	178	178	178	179	186
Ellesmere TS	189	124	126	128	129	130	131	131	132	133	133	134	134	134	135	138
Leaside TS	202	163	169	174	177	178	179	179	181	182	182	183	183	183	186	
Scarboro TS	340	222	225	227	229	231	232	233	235	237	237	237	238	238	250	
Sheppard TS	205	178	182	184	187	187	189	191	193	193	193	197	201	203	216	
Warden TS	182	123	125	126	127	129	130	131	131	131	135	139	141	144	153	157
West 230 kV							100			• • • •						• • •
Horner TS ⁽²⁾	365	141	145	146	148	193	199	202	204	208	213	221	228	234	268	292
Manby TS ⁽²⁾	226	245	258	262	269	225	225	225	225	225	225	225	225	225	225	225
Rexdale TS	187	136	138	139	139	141	141	143	143	143	143	141	141	139	131	122
Richview TS	460	279	263	268	270	271	274	275	276	279	276	274	270	269	263	252
Leaside 115 kV																
Basin TS	88	65	71	75	76	77	77	78	79	79	81	83	84	85	91	95
Bridgman TS	212	154	154	156	157	157	160	161	161	162	163	164	165	167	180	186
Carlaw TS	73	66	67	67	67	68	68	69	69	70	70	70	70	72	72	72
Cecil TS	215	166	174	179	181	183	185	186	187	188	186	184	182	181	181	181
Charles TS	211	145	151	154	155	156	158	158	159	159	161	164	166	167	175	176
Dufferin TS	170	136	120	123	124	124	125	126	127	129	133	134	138	141	151	155
Duplex TS	128	99	101	100	98	97	94	94	96	97	98	99	100	102	108	113
Esplanade TS	187	163	143	146	147	147	149	149	150	151	150	148	147	144	148	149
Gerrard TS	102	37	46	49	51	51	52	52	52	54	54	54	54	54	55	56
Glengrove TS	88	51	53	53	54	54	54	54	54	54	55	57	58	59	63	65
Main TS	77	60	61	61	63	64	64	64	65	65	67	67	68	69	70	70
Terauley TS	249	175	188	194	190	188	188	191	191	191	190	187	185	184	181	182
Manby E 115 kV																
Fairbank TS	182	171	151	159	164	169	173	176	177	178	179	181	182	182	188	193
Runnymede TS	219	96	136	141	143	143	146	146	148	148	149	149	151	151	158	164
Wiltshire TS	133	56	74	75	75	75	76	76	76	78	78	79	79	79	86	90
Manby W 115 kV																
Copeland MTS	130	0	0	52	93	93	94	94	96	96	98	99	100	102	107	112
John TS	314	264	267	217	203	204	205	206	208	208	212	214		220	230	
Strachan TS	169	139	143	145	146	147	147	149	149	150	155				182	

Table D-2: Toronto Non-Coincident Load Forecast, without	t the Impacts of Energy-Efficiency Savings
--	--

(1) Non-coincident station peak, adjusted to extreme weather

(2) Load transferred to the new Horner TS DESN #2 in 2022

	Near & Mid-Term Forecast (MW) LTR														ong-Te ecast (N	
Area & Station	(MW)	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2035	2040
North 230 kV	(11211)	2010	-012	2020	2021	2022	2020	2021	2020	2020	2027	2020		2000	2000	2010
Agincourt TS	174	91	94	96	98	99	100	100	101	101	102	102	102	103	105	108
Bathurst TS	334	208	217	222	225	226	227	229	229	231	231	233	235	237	252	260
Cavanagh MTS	157	90	91	92	92	93	93	93	93	94	95	95	95	96		107
Fairchild TS	346	232	233	234	236	237	238	239	241	241	240	241	242	242	244	249
Finch TS	365	247	255	254	256	256	256	257	258	260	261	263	263	263	267	272
Leslie TS	325	230	237	244	245	248	248	250	250	252	252	253	253	253	266	276
Malvern TS	176	82	83	84	85	84	84	85	86	86	88	233 90	233 92	93	200	101
East 230 kV	170	02	05	04	05	04	04	05	00	00	00	70	12	,,,		101
Bermondsey TS	348	146	150	151	153	155	156	156	157	159	158	159	158	157	157	162
Ellesmere TS	189	123	124	126	127	133	128	128	128	129	128	129	138	128	128	131
Leaside TS	202	149	154	120	127	160	120	128	120	162	128	162	129	128	120	168
Scarboro TS	340	202	204	206	208	208	208	209	210	212	211	211	211	211	219	225
Sheppard TS	205	140	141	143	208 145	144	208 146	146	148	148	147	150	152	153	161	167
	182	140	141	143	143	144	140	140	140	140	1113	115	132	133	125	129
Warden TS West 230 kV	182	105	100	107	108	109	109	110	109	109	115	115	11/	110	123	129
	265	120	125	120	120	127	120	120	140	1.4.1	1.4.4	140	150	154	169	177
Horner TS	365	132	135	136	138	137	139	139	140	141	144	148 214	152	154	168	177
Manby TS	226	189	199	202	207 122	208	210	210	211	212	212		215	216		238
Rexdale TS	187	121	122 209	123		124	123	125	124	124	123	121	120	118	110	102
Richview TS	460	224	209	213	214	215	216	216	216	218	215	213	209	207	200	192
Leaside 115 kV	00	<i>C</i> 4	70	74	75	75	75	76	77	76	70	00	00	01	0.0	00
Basin TS	88	64	70	74	75	75	75	76	150	76	78 157	80	80	81	86	90
Bridgman TS	212	152	151	153	154	153	156	156	156	156		157	157	159	169	175
Carlaw TS	73	62	63	63	63	64	63	64	64	65	64	64	64	66	65	65
Cecil TS	215	160	167	172	174	175	176	177	177	178	175	173	170	169	167	167
Charles TS	211	143	149	151	152	152	154	153	154	153	155	157	158	159	165	166
Dufferin TS	170	134	119	122	123	122	123	123	124	126	129	130	133	135	143	147
Duplex TS	128	98	99	98	96	95	91	91	93	94	94	95	95	97	102	106
Esplanade TS	187	160	140	142	143	143	144	144	144	145	144	141	140	136		140
Gerrard TS	102	32	41	43	45	45	46	46	46	47	46	46	46	46		47
Glengrove TS	88	47	49	49	50	50	50	49	49	49	50	52	52	53		58
Main TS	77	55	56	56	57	58	57	57	58	58	60	59	60	61	61	61
Terauley TS	249	173	185	190	186	184	183	185	185	184	183	179	177	175	171	172
Manby E 115 kV	100															
Fairbank TS	182	139	123	130	132	136	138	140	141	141	142	142	143			149
Runnymede TS	219	95	134	139	140	140	143	142	144	143	144	144	145			155
Wiltshire TS	133	54	70	71	71	70	71	71	71	73	72	73	73	73	78	81
Manby W 115 kV																
Copeland MTS	130	0	0	51	91	91	92	91	93	93	94	95	96		101	106
John TS	314	256	258	207	193	194	194	194	196	195	198	200	202			224
Strachan TS	169	137	141	142	143	144	143	145	144	145	149	152	156	159	172	182

Table D-3: Toronto IRRP Load Forecast, with the Impacts of Energy-Efficiency Savings

	LTR							id-Ter (MW)							ong-Te ecast (N	
Area & Station		2018 (1)	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2035	2040
North 230 kV						-		-								
Agincourt TS	174	112	115	118	120	121	122	123	124	124	124	125	125	126	128	133
Bathurst TS	334	227	237	243	246	247	249	250	251	252	252	255	257	259		285
Cavanagh MTS	157	108	109	110	111	112	111	111	112	113	114	113	114	115	123	128
Fairchild TS	346	268	269	270	272	273	275	276	277	278	277	278	279	279	282	287
Finch TS	365	290	295	299	301	302	302	303	304	306	307	309	309	310	314	320
Leslie TS	325	233	240	247	248	251	251	253	255	255	255	256	256	256	270	279
Malvern TS	176	105	106	107	108	108	108	109	110	110	113	115	117	118	126	130
East 230 kV																
Bermondsey TS	348	160	164	165	168	169	170	170	171	173	172	173	172	172	171	178
Ellesmere TS	189	124	126	127	128	129	129	129	130	130	130	130	130	130	129	132
Leaside TS	202	163	169	173	176	176	176	176	178	178	177	178	177	177	177	185
Scarboro TS	340	222	224	226	228	228	229	229	231	233	232	231	232	231	241	247
Sheppard TS	205	178	180	182	185	184	186	187	189	188	188	191	194	196	206	213
Warden TS	182	123	124	125	126	127	128	129	128	128	132	135	137	139	146	151
West 230 kV																
Horner TS ⁽²⁾	365	141	145	146	147	189	194	195	196	199	203	209	214	219	247	271
Manby TS ⁽²⁾	226	245	257	260	267	225	225	225	225	225	225	225	225	225	225	225
Rexdale TS	187	136	137	138	137	139	138	140	140	139	139	136	135	133	123	115
Richview TS	460	279	262	266	268	268	270	270	270	272	269	266	261	259	250	240
Leaside 115 kV																
Basin TS	88	65	71	75	75	76	76	77	77	77	79	81	81	82		91
Bridgman TS	212	154	153	155	156	155	158	158	158	158	159	159	159	161	171	177
Carlaw TS	73	66	67	67	67	67	67	68	68	69	68	68	68	70		69
Cecil TS	215	166	173	178	180	181	183	183	183	184	182	179	176		173	173
Charles TS	211	145	150	153	154	154	155	155	156	155	157	159	160	161	167	168
Dufferin TS	170	136	119	122	123	123	123	124	124	126	129	130	133	136		148
Duplex TS	128	99	101	99	97	96	93	92	94	95	95	96	96	98		108
Esplanade TS	187	163	143	145	146	146	147	147	147	148	147	144	143	139		143
Gerrard TS	102	37	47	50	52	52	53	53	53	54	53	53	53	53	53	54
Glengrove TS	88	51	52	52	53	53	53	53	53	52	53	55	56		60	62
Main TS	77	60	61	61	62	63	63	62	63	63	65	65	66	66		67
Terauley TS	249	175	187	193	188	186	185	188	187	187	185	181	179	177	173	174
Manby E 115 kV																
Fairbank TS	182	171	150	158	162	167	171	173	173	174	175	176	176			184
Runnymede TS	219	96	63	115	157	156		157	160	159	161	161	162			
Wiltshire TS	133	56	74	75	74	74	75	75	75	76	76	77	77	77	83	86
Manby W 115 kV																
Copeland MTS	130	0	0	51	91	91	92	91	93	93	94					106
John TS	314	264	265	215	200	200		201	202	202	205	207				232
Strachan TS	169	139	143	144	145	146	145	147	146	147	151	155	158	161	174	184

Table D-4: Toronto Non-Coincident Load Forecast, with the Impacts of Energy-Efficiency Savings

(1) Non-coincident station peak, adjusted to extreme weather

(2) Load transferred to the new Horner TS DESN #2 in 2022