

Prepared for: Hydro One Networks Inc. 483 Bay Street South Tower, 4th Floor Toronto, ON M5G 2P5

Prepared by: Stantec Consulting Ltd. 300 – 675 Cochrane Drive Markham, ON L3R 0B8

Project No.:160900764 March 10, 2014

Sign-off Sheet

This document entitled HYDROGEOLOGIC & HYDROLOGIC ASSESSMENT REPORT CLARINGTON TRANSFORMER STATION was prepared by Stantec Consulting Ltd. for the account of Hydro One Networks Inc. The material in it reflects Stantec's best judgment in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. Stantec Consulting Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

HYDROGEOLOGICAL COMPONENTS

Prepared by original signed and stamped (signature) Angela Ducharme, B.Sc., EPt **Environmental Scientist** Reviewed by original signed and stamped (signature) Lesley Veale, M.Sc., P.Geo Hydrogeologist Reviewed by original signed and stamped (signature) J. Brant Gill, H.B.Sc., P.Geo. Senior Hydrogeologist HYDROLOGIC COMPONENTS Prepared by original signed and stamped (signature) Trevor Fraser, B.Eng. Water Resources EIT Reviewed by original signed and stamped (signature) Scott Robertson, P.Eng. Associate, Water Resources Project Manager Stantec

Table of Contents

1.0		1.1
1.1	PROJECT AREA	
1.2	OBJECTIVES	
1.3	REPORT FORMAT	
2.0	SETTING	2.1
2.1	GENERAL ENVIRONMENTAL FEATURES	
2.2	PHYSIOGRAPHY	
	2.2.1 Oak Ridges Moraine	
2.3	GEOLOGY / HYDROGEOLOGY	
	2.3.1 Bedrock	
	2.3.2 Surficial Geology	
	2.3.3 Overburden Stratigraphy	
	2.3.4 Groundwater Levels	
	2.3.5 Aquifer Vulnerability and Groundwater Recharge	
	2.3.6 Summary	
2.4	HYDROLOGY	
	2.4.1 Hydrologic Model Development	
3.0	SITE DEVELOPMENT AND IMPACT ASSESSMENT	3.1
3.1	HYDROGEOLOGY	
3.2	HYDROLOGY	
4.0	GROUNDWATER AND SURFACE WATER MONITORING PROGRAM	41
4.1	OBJECTIVES	
4.2	MONITORING PROGRAM SCOPE	
4.3	MONITORING INSTALLATIONS	
	4.3.1 Site Monitoring Wells	
	4.3.2 Private Well Monitoring	
4.4		
4.5	WATER QUALITY ANALYSES	
4.6	MONITORING SCHEDULE	
4.7	REPORTING	
5.0		5.1
6.0	REFERENCES	۸ 1
v.v		······································

LIST OF TABLES

Table 1	Design Rainfall Parameters for Burketon McLaughlin Gauge	2.9
Table 2	Existing Conditions Hydrologic Model Results2.	10
Table 3	Monitoring Schedule	1.6

LIST OF APPENDICES

APPENDIX A	FIGURES	۱.1
APPENDIX B	BOREHOLE LOGS	3.1
APPENDIX C	WATER WELL RECORDS	2.1
APPENDIX D	HYDROLOGY).1

LIST OF FIGURES

Figure 1	Site Location
Figure 2	Site Plan
Figure 3	Schematic of Oak Ridges Moraine
Figure 4	Regional Surficial Geology
Figure 5	Project Surficial Geology
Figure 6	Cross-Section A-A'
Figure 7	Cross-Section B-B'
Figure 8	Drainage Catchments and At-Surface Soils
Figure 9	Drainage Catchments and Aerial Imagery
Figure 10	Groundwater and Surface Water Monitoring Locations

Introduction March 10, 2014

1.0 Introduction

Stantec Consulting Ltd. (Stantec) was retained by Hydro One Networks Inc. (Hydro One) to complete a hydrogeologic and hydrologic assessment related to the development of the 500-230 kV Clarington auto-transformer Station on the Hydro One property ('*Project Area*') located in the Regional Municipality of Durham, in the Municipality of Clarington, on Part Lots 33, 34, and 35, Concession Road #7. The *Project Area* and the extents of the transformer station itself, hereinafter referred to as the '*Site*', are shown on Figures 1 and 2 in Appendix A.

This hydrogeologic and hydrologic assessment involved a review and consolidation of available literature and technical information for the *Project Area* that was collected during the Class EA process; including three (3) geotechnical investigations completed within the *Project Area*. This report also addresses the request by the Central Lake Ontario Conservation Authority (CLOCA) for a consolidated hydrogeologic and hydrologic assessment report of the *Project Area*.

Some of the information presented in this Hydrogeologic and Hydrologic Assessment Report has been summarized and included in the Project's Class EA Environmental Study Report (ESR) that was filed with the MOE in January 2014.

1.1 **PROJECT AREA**

The Project Area comprises a total area of approximately 63 ha, which includes the smaller limits of the 'Site'. The Site encompasses approximately 17 ha within which grading will occur and drainage infrastructure and transformers will be installed, and is entirely located within the *Project Area* (Appendix A, Figure 2).

The extent of the area considered in this assessment includes the *Project Area* described above, and relies on the reports of detailed geotechnical investigations completed within the limits of the *Project Area*. However, because of the regional scale of some of the natural environment features that are identified within and in relative proximity to the *Project Area*, this assessment considers the form and function of these specific key regional features as well. As a result, the natural environment features discussed throughout this report are of both regional and local importance, as they specifically relate to the hydrogeology and hydrology of the *Project Area*. As such, fixed boundaries defining the lateral limits of this assessment are not shown on any figures appended to this report.

Introduction March 10, 2014

1.2 OBJECTIVES

The objective of the following hydrogeologic and hydrologic assessment report prepared by Stantec is to with the following key objectives:

- 1. Compile the hydrogeologic and hydrologic data collected during the Class EA process, as requested by CLOCA;
- 2. Provide a technical summary of current geologic/hydrogeologic and hydrologic conditions across the Project Area and related surroundings that were established during the Class EA process; and,
- 3. Summarize previous assessments, based on the available information assessed, regarding whether the natural function of hydrogeologic and hydrologic features within the *Project* Area would be adversely impacted by the development, and assess potential adverse impacts to human and natural environment receptors. In the event that adverse impacts are anticipated, recommend mitigative strategies.

1.3 REPORT FORMAT

The following report is arranged into six (6) sections, including this introduction. Section 2 provides a description of geologic, hydrogeologic, and hydrologic conditions that characterize the *Project Area* and the *Site*, with Section 3 presenting the *Site* development activities and an assessment of potential hydrogeologic and hydrologic impacts. Section 4 presents the recommended groundwater and surface water monitoring program. Section 5 provides the conclusions and recommendations of the report, while Section 6 provides a list of references. All figures referenced in this report are presented in Appendix A. Borehole Logs and nearby Ministry of the Environment (MOE) Water Well Records (WWR) are presented in Appendices B and C, respectively. Supporting information related to hydrologic analyses is included within Appendix D.

Setting March 10, 2014

2.0 Setting

2.1 GENERAL ENVIRONMENTAL FEATURES

The Project Area falls within the planning area of the Region of Durham and the Municipality of Clarington, Part Lots 33, 34 and 35, Concession 7 (Figure 2). The upper tier regional plan identifies the *Project Area* as Countryside Area, and Natural Linkage Area and Natural Heritage Systems as per the Oak Ridges Moraine Conservation Plan (ORMCP) (Ministry of Municipal Affairs and Housing (MMAH), 2002) and Greenbelt Plan (MMAH, 2005) and also designates the *Project Area* as Prime Agricultural land.

Land throughout the *Project Area* is hilly but generally slopes from north to south. Within the *Project Area*, land predominantly slopes from northeast to southwest, directing surface runoff toward the watercourses at the western and southern portions of the Project Area. Ground surface elevation within the *Project Area* ranges from 235 m above mean sea level (AMSL) to 270 m AMSL.

2.2 PHYSIOGRAPHY

On a regional scale, the *Project Area* is occupied by the physiographic region defined by Chapman and Putnam (1984) as the South Slope, characterized by till plains with long, thin drumlins pointing upslope. The core of the Oak Ridges Moraine physiographic region is located approximately 6 km to the north of the *Project Area*. Recent planning mapping and land use characterization indicates that the *Project Area* is located within the southern edge of the of the Oak Ridges Moraine administrative planning boundary (Figure 1). In the vicinity of the *Project Area*, the Oak Ridges Moraine administrative planning boundary is delineated approximately by the 245 m elevation contour interval, rather than by site-specific geologic or hydrogeologic characteristics.

2.2.1 Oak Ridges Moraine

The Oak Ridges Moraine is a terminal moraine composed mainly of sands and gravels, with till layers present throughout the moraine. The Oak Ridges Moraine covers an area of 1,900 km² and extends from approximately Caledon, Ontario to north of Cobourg, Ontario and forms a regional topographic high. The Oak Ridges Moraine consists of quaternary deposits up to 200 m thick, grouped into the following five (5) general classifications as generally described by Geological Survey of Canada (2001) and presented from oldest to youngest:

- Lower Deposits which directly overly the bedrock and consist of interbedded layers of sand, silt, clay and till material. These deposits include the Thorncliffe Formation, Sunnybrook/Port Hope Till, Scarborough Formation, Don Formation, York Till and lower sediments;
- Newmarket Till described as a sandy till with some gravel extending up to 50 m in thickness;

Setting March 10, 2014

- A regional unconformity that forms the upper drumlinized and channelized surface of the Newmarket Till. Tunnel channels oriented in a north-northeast to south-southwest direction extend through the Newmarket Till and may extend to the bedrock. The channels may be 10's of km long, < 4 km wide and up to 150 m deep. The channels primarily contain sandy sediments related to the Oak Ridges Moraine sediment but may also contain gravel material;
- Oakridge's Moraine Sediments described as interbedded silt and fine sand with local sandy gravel material; and,
- Halton Till or Kettleby Till overly portions of the Oak Ridge's Moraine and are predominantly composed of clayey silt to silt till with interbedded sand and silt material.

Groundwater recharge occurs within the surficial sand and gravel deposits of the Oakridge's Moraine Sediments and is discharged within seeps and springs toward the lower slopes of the moraine.

An interpretive schematic of the Oak Ridges Moraine is presented on Figure 3. As shown on the figure, the core of the moraine is largely the result of glaciofluvial deposition; the flanks of the moraine reflect glaciolacustrine sedimentation and till deposits. The *Project Area* is located on the southern extent of the moraine as shown on Figure 4. As previously discussed, the *Project Area* is located within the Oak Ridges Moraine administrative planning boundary; however, the Project Area is approximately 5 km south of where Oak Ridge's Moraine Sediments are exposed at ground surface, and approximately 6 km south of the core deposits.

2.3 GEOLOGY / HYDROGEOLOGY

The following sections detail the geology and hydrogeology within both the study area and the *Project Area*.

2.3.1 Bedrock

The bedrock underlying the *Project Area* consists of the Upper Ordovician Blue Mountain Formation (OGS, 1991) composed of blue grey non-calcareous shales. The top of bedrock occurs at an elevation of 60 m to 70 m AMSL at the Lake Ontario shoreline to 150 m AMSL at the topographic highs of the Oak Ridges Moraine (Singer et al., 2003). As previous stated, ground surface elevation within the *Project Area* ranges from 235 m AMSL to 270 m AMSL and bedrock will not be a factor for the development.

2.3.2 Surficial Geology

Surficial geology mapping, shown in Figures 4 and 5, presents the regional-scale surficial geology with respect to the Oak Ridges Moraine as well as the local-scale surficial geology within the *Project Area*, respectively.

Setting March 10, 2014

The regional surficial geology mapping indicates that the coarse sand and gravel material associated with the core groundwater recharge zone within the Oak Ridges Moraine is located approximately 6 km north of the *Project Area* (Figure 4). The *Project Area* is located along the southern flank of the Oak Ridges Moraine, with surficial deposits primarily mapped as Newmarket Till, a silty to sandy till (Figure 5). Intermittent deposits of Halton Till, a silty to clayey till, were noted within the *Project Area* as well as modern alluvial deposits associated with local watercourses.

2.3.3 Overburden Stratigraphy

A review of nearby MOE WWR in the local study area (Figure 2) indicated that the overburden is primarily reported as stony clay material extending from near surface up to 104 m below ground surface (BGS) (160 m AMSL). Bedrock was not encountered at any of the nearby MOE WWR locations. MOE WWR indicated intermittent water-bearing sand and gravel lenses at various depths within the overburden, with the lenses ranging between 0.3 m and 5.8 m thick.

As previously stated, the topography within the *Project Area* is hilly. For ease of evaluation and comparison of MOE WWR data, the water level and stratigraphic data are presented as elevation (m AMSL) to account for changes in topography. When appropriate for discussion, the data are also presented as depth (m BGS).

There are twenty (20) MOE WWR located within 500 m of the *Project Area* installed to total depths of between 5.2 m and 108 m BGS. For ease of discussion in the report, the wells are grouped together based on depth. This grouping is for discussion purposes only, and is not interpreted to be representative of specific aquifers, but rather wells that are completed within sandy material at similar elevations. The noted well groups are as follows:

- Three (3) shallow wells completed at total elevations of 241 m AMSL to 248 m AMSL (depths of 5 m BGS to 14 m BGS). These wells are interpreted to be installed within discrete intermittent sand and gravel lenses up to 0.6 m thick with no significant continuous aquifer noted. These wells include MOE Well Record Nos. 1909285 and 1904535, located to the northeast of the *Project Area*; and Well No. 7128981, located south of the *Project Area* (Figure 2). The reported well installation details were as follows:
 - Well No. 1909285 Clay to sandy clay material to 13.7 m BGS underlain by sand to 14.3 m BGS (246.1 m AMSL);
 - Well No. 1904535 Stoney clay material to 5.2 m BGS (245.4 m AMSL) with a gravel lens at 2.4 to 2.7 m BGS; and,
 - Well No. 7128981 Sandy clay, silt and silty clay to 11.4 m BGS (240.5 m AMSL).
- Eight (8) intermediate wells completed at total elevations of 204 m AMSL to 226 m AMSL (depths of 8 m BGS to 22 m BGS). The overburden material was primarily described as clayey material overlying a screened aquifer material. The aquifer material is interpreted as a discrete intermittent sand and gravel lens(es), with no significant continuous intermediate aquifer noted across the *Project Area*; and,

Setting March 10, 2014

• Nine (9) deep wells completed at total elevations of 160 m AMSL to 189 m AMSL (depths of 49 m BGS to 108 m BGS). The overburden was primarily described as clayey material overlying the screened aquifer material. The available water well records in the area are not adequate to confirm the presence of a continuous aquifer; however, based on regional interpretation, these deep wells may be intersecting the upper portion of the Thorncliffe Formation.

Cross Section A-A' (Figure 6) presents the interpreted overburden stratigraphy across the *Project Area*; indicating the predominant till or aquitard material throughout the majority of the overburden, with intermittent sand and gravel deposits at various depths. The locations of nearby private wells are also shown on the cross-section; including examples of nearby off-site shallow, intermediate, and deep private wells.

Reports of geotechnical investigations completed within the *Project Area* to further characterize the shallow stratigraphy were reviewed, including Geo-Canada Ltd. (2007), exp (2012), and Inspec-Sol (2013). These geotechnical investigations included drilling numerous boreholes and installing four (4) monitoring wells across the *Project Area*. The geotechnical borehole and monitoring well locations are shown on Figure 2.

In 2007, Geo-Canada Ltd. completed a geotechnical investigation within the general *Project Area*. The report indicated that the overburden material within the northeast portion of the *development area* was characterized by 5.5 m of sandy silt till, overlying 2.8 m of very dense, saturated silty fine sand/fine sandy silt, followed by 5.7 m of sandy silt till to the depth of the borehole (Stantec, 2008).

More recently, geotechnical boreholes and monitoring wells were completed throughout the *Project Area* to document shallow overburden conditions (exp, 2012; Inspec-Sol, 2013). A total of twenty-nine (29) boreholes were advanced within the *Project Area* to depths between 11 m BGS and 16 m BGS, with total depths ranging in elevation from 228 m AMSL to 245 m AMSL. A total of four (4) boreholes were completed as monitoring wells, including BH7A, BH2-12, BH4-12 and BH11-12 (Figure 2). Borehole logs indicate sandy silt till as the dominant stratigraphic unit across the *Project Area* within the depth of investigation, with occasional intermittent lenses of silty sand material, typically between 0.5 m and 3 m thick.

The borehole logs were consistent with conditions presented by MOE WWR and Ontario Geological Survey (OGS) mapping. The interpreted shallow stratigraphy within the *Project Area* is shown in the cross sections presented on Figures 6 and 7. The figures were compiled using stratigraphic data from boreholes, monitoring wells, and nearby MOE WWR, and present both shallow and deep geological stratigraphy. The shallow overburden material within the *Project Area* is predominantly composed of relatively low permeability dense Newmarket Till (silt till) with discrete layers of silty sand, clayey silt, and sand and gravel material.

Setting March 10, 2014

2.3.4 Groundwater Levels

Groundwater elevations within the *Project Area* were evaluated based on data from nearby MOE WWR and available monitoring wells. For the nearby MOE WWR, the following groundwater levels were presented on the original well logs recorded between 1954 to 2010:

- Three (3) shallow wells indicated static groundwater levels of 2.1 m to 2.4 m BGS (248.1 m AMSL to 258.3 m AMSL);
- Eight (8) intermediate wells indicated static groundwater levels of 5.5 m to 9.1 m BGS (218 m AMSL to 234 m AMSL); and,
- Nine (9) deep wells indicated static groundwater levels of 19 m to 49 m BGS (204 m AMSL to 222 m AMSL).

As described in Section 2.3.3, the nearby shallow and intermediate depth wells are all completed within intermittent silty sand, and sand and gravel material. Some of the deep wells may be installed within the top of the Thorncliffe Formation. The available water level data generally indicates a vertical hydraulic stratification within the *Project Area* with downward gradient within the overburden material. Downward flow is controlled and restricted by the fine textured, low permeability Newmarket Till, as such, minimal groundwater recharge is expected.

Permeability is the ability of the material to allow water to flow through it. A high permeability material, such as sand and gravel, acts as an aquifer allowing water to easily flow through the material. A low permeability material, such as clay or silt till (as is the Newmarket Till), acts as an aquitard, impeding the flow of groundwater. This low permeable till material within the *Project Area* extends from ground surface up to at least 104 m BGS (160 m AMSL), with intermittent discrete water bearing silty sand and gravel lenses.

Groundwater levels were also measured in open boreholes and monitoring wells as part of the drilling activities completed by exp and Inspec-Sol. Groundwater levels measured in open boreholes during drilling operations may not have yet equilibrated, and may not be representative of static conditions. For example, borehole BH2-12 was completed within silt till material and a water level of 14.85 m BGS was noted within the borehole immediately following drilling. A monitoring well was then installed within this borehole and the well was allowed to equilibrate. A static groundwater level of 0.16 m BGS was measured 5 days after well installation. Based on this potential underestimate of groundwater levels based on data from the open boreholes, groundwater levels from the open boreholes are only presented on the borehole logs in Appendix B but are not discussed in this report.

Setting March 10, 2014

Groundwater levels were measured at the four (4) monitoring wells within the *Project Area* by exp (May 2012, Inspec-Sol (November 2012), and Stantec (September and December 2013) with the following results:

- The monitoring well at BH11-12 was screened across silt and sand material at 13.7 m BGS to 14.8 m BGS. Artesian conditions were noted at BH11-12 with the groundwater level ranging from 0.9 m above ground surface (AGS) in November 2012 and December 2013 to 0.3 m below ground surface in September 2013 (254.5 m to 253.3 m AMSL). This level indicates the groundwater level or pressure within the screened silt and sand material, and does not necessarily indicate that water is naturally discharging at ground surface at this specific location;
- Groundwater levels recorded at BH7A varied between 1.4 m BGS in December 2013 and 2.4 m BGS in May 2012 and September 2013 (251.8 to 250.8 m AMSL) and indicate potential seasonal fluctuations in groundwater levels at this well;
- Groundwater levels recorded at BH2-12 varied between 0.2 m BGS in November 2012, 1.9 m BGS in September 2013, and 0.9 m BGS in December 2013 (246.0 to 244.3 m AMSL), located within the center and southern portions of the *Site*, respectively; and,
- Groundwater levels recorded at BH4-12 were dry upon installation in November 2012, 9.6 m BGS in September 2013, and 9.0 m BGS in December 2013 suggest the well has responded very slowly from installation, and that the screened interval is installed within soil with low hydraulic conductivity.

These results are representative of pre-construction groundwater levels within the *Project Area*; indicating a general groundwater flow direction from northeast to southwest, and consistent with topography. As previously stated, based on the fine textured, low permeability Newmarket Till present across the *Project Area*, minimal groundwater recharge is expected.

There is anecdotal evidence that groundwater seepage may be occurring at some locations within the *Project Area*. Site visits in June, July, September, November, and December 2013 found no evidence of groundwater seepage within the Project Area; indicating that groundwater seepage, if present, may occur in spring months following recharge from snow melt. Overland runoff has been observed following rain events within the *Project Area*, as would be anticipated, given the low permeability surficial till present.

Available water level data from monitoring wells and MOE WWR are presented on Figure 6 and Figure 7. Water levels in Figure 6 indicate the general northeast to southwest groundwater flow direction.

2.3.5 Aquifer Vulnerability and Groundwater Recharge

A review of aquifer vulnerability and groundwater recharge zones was completed as part of the source water assessment for the Central Lake Ontario Source Water Protection Area completed by CLOCA (2012).

Setting March 10, 2014

Mapping indicated that the entire *Site* and majority of *Project Area* are considered low aquifer vulnerability. The mapping indicated high aquifer vulnerability at the eastern extent of the *Project Area*, which is likely related to alluvial deposits along the seasonal stream. This high vulnerability area is outside of the *Site* boundaries.

CLOCA (2012) mapping also indicated that the *Project Area* and *development area* were not mapped as a significant groundwater recharge areas. This description is consistent with both OGS mapping and available borehole logs; which primarily indicated clayey material or silt till at ground surface, with occasional intermittent discrete lenses of silty sand material at depth.

2.3.6 Summary

The *Project Area* is located within the South Slope physiographic region, along the southern boundary of the Oak Ridges Moraine planning administrative boundary, with surficial deposits of Newmarket Till and isolated deposits of Halton Till. Alluvial deposits associated with watercourse erosion and sediment deposition were also mapped at surface along Farewell Creek and Harmony Creek and their tributaries. The overburden in the vicinity of the *Project Area* primarily consists of till material (Newmarket Till) or fine grained material with low permeability; extending from ground surface up to 104 m BGS (160 m AMSL), with intermittent discrete water bearing silty sand lenses.

A review by CLOCA indicated that the *Project Area* is not considered a significant recharge area and, due to the low permeability fine grained surficial material, the entire *Site* and majority of *Project Area* are considered low aquifer vulnerability.

The shallow stratigraphy within the *Site* consists of sandy silt till with occasional intermittent discrete lenses of silty sand material typically between 0.5 m and 3 m thick. Groundwater levels within the shallow overburden are expected to range from 254.5 m AMSL (BH11-12) to 246.0 m AMSL (BH2-12). The groundwater flow direction within the shallow overburden is from northeast to southwest, generally consistent with topography. There was no evidence to confirm the presence of shallow groundwater discharge conditions were occurring during the summer months in 2013; however, based on anecdotal evidence, shallow groundwater seepage may occur at select locations with the *Project Area* during spring months, possibly within the southern portion of the *Project Area*.

The deeper overburden stratigraphy within the *Project Area* predominantly consists of Newmarket Till or aquitard material, with intermittent silty sand and gravel deposits at various depths. Nearby private wells are installed within these intermittent sand lenses, as encountered, at varying depths. The range in well installation depth suggests that a significant extensive sand aquifer is not located within the vicinity of the *Project Area*. The degree to which the discrete shallow and intermediate depth sand lenses may be hydraulically connected is not known at this time. At all wells, clayey material was noted overlying the screened aquifer material. Low permeability clayey material typically acts as a confining unit, minimizing recharge / impacts from ground surface to the water supply.

Setting March 10, 2014

2.4 HYDROLOGY

The delineation of surface water subwatershed boundaries and identification of major flow paths were completed using Ontario Base Maps (OBM) with 5 m topographic contour intervals. Site-specific topographic survey information, as provided by Hydro One, is consistent with drainage divides within the *Project Area*, as mapped using the OBM data. Generally, the subwatershed terrain for the external contributing drainage areas and for the *Project Area* exhibits moderate relief, with typical slopes in the 5-10% range. The topographic range within the *Project Area* varies from a high point of approximately 270 m AMSL at the northern boundary of the property, to a low of approximately 235 m AMSL at the southwest discharge location. The delineation of existing conditions drainage catchments and graphical information relating to other parameters of interest (soil type, topography, aerial imagery) are provided on Figures 8 and 9.

Under existing conditions, there are four (4) points of defined surface water flow from the *Project Area* boundaries, including two (2) intermittent watercourses at the west and east property limits; a tributary to Harmony Creek (main tributary and south branch) and a tributary to Farewell Creek, respectively (Figure 8). Two (2) low-lying surficial drainage features with no defined watercourse attributes (i.e., bed and banks) flow off-site to the south generally in the middle of the property, confluencing immediately downstream of the *Project Area*. Two (2) small wetland pockets are found within the *Project Area*; one coinciding with the upper portion of the south branch of the Harmony Creek tributary immediately north of the *Site*, and another found along the riparian areas of Farewell Creek, east of the *Site* near Langmaid Road (Figure 9).

The existing conditions drainage system has been delineated with four (4) subcatchments, as shown on Figures 8 and 9, and summarized as follows:

- Catchment 100: 24 ha draining to the east-to-west tributary, identified as Reaches 1-4 and 1-5 in the Natural Heritage Existing Conditions Report (Stantec, August 22, 2012), bordering the north limits of the developing area and combining with the main Harmony Creek tributary from Catchment 101 at Key Point A;
- Catchment 101: 78 ha draining to the main tributary of Harmony Creek flowing north-tosouth at the west limits of the *Project Area*, combining with the east-west tributary described above at Key Point A, and discharging from the property at Key Point B;
- Catchment 102: 142 ha draining to the tributary of Farewell Creek crossing the east limits of the *Project Area*, discharging at Key Point C; and,
- Catchment 103: 23 ha catchment, predominantly contained within the south-central portion of the *Project Area*, draining to the two low-lying surficial drains discharging at the south property boundary at Key Point D.

Setting March 10, 2014

Land uses within the majority of the tributary subwatershed consist of cropped agricultural land with some small woodlots. At-surface soil conditions within the overall drainage catchment are based on data from Agriculture and Agri-Food Canada soils reports for the Durham Region and indicate predominant coverage of Bondhead Loam and Muck (Hydrologic Soil Type B) (Figure 8). The Bondhead Loam was derived from the underlying till material.

2.4.1 Hydrologic Model Development

A hydrologic model was created to provide a quantitative estimate of the flows to and across the *Project Area*, using the Stormwater Management Hydrologic Model (SWMHYMO) software package and return-period rainfall events (1:2-year, 1:5-year, and 1:100-year). Design rainfall events were derived from Intensity-Duration-Frequency (IDF) data applicable to the Burketon McLaughlin rainfall gauge, located approximately 7 km from the *Project Area*. Utilizing a Soil Conservation Service (SCS) statistical rainfall distribution, a variety of storm durations (6 and 24-hour) were developed to understand hydrologic characteristics under a range of conditions. Table 1 presents a summary of the input rainfall event depths and durations.

Return Period	6-hr Storm Event Depth (mm)	24-hr Storm Event Depth (mm)
2-year	37.9 mm	47.1 mm
5-year	50.0 mm	59.2 mm
100-year	83.1 mm	92.4 mm

Table 1 Design Rainfall Parameters for Burketon McLaughlin Gauge

To reflect *Project Area* and Region-specific hydrologic characteristics, some modification to "standard" modeling assumptions were incorporated. Typically, standard modeling subroutines are used for hydrologic model development, utilizing default calibration parameters in the determination of rainfall-runoff relationships. In the *Project Area*, however, the CLOCA provides detailed recommendations for model development, requiring the consideration of non-default parameters. For example, the default initial abstraction (IA) value in SWMHYMO, identifying that initial portion of the rainfall event that is 'lost' to incidental storage or use (e.g., intercepted by vegetation, at-ground depressions storage, etc.) is 1.5 mm, whereas CLOCA's recommended value for crops is 7.0 mm. Details of the input parameters for the hydrologic model are included in Appendix D.

Table 2 presents the results of the peak flow rates under the existing conditions model.

Setting March 10, 2014

			Si	orm Event	Return-Pei	riod			
Key Flow Point / Subcatchment	Storm Duration	Z-V		5-yr		100)-yr		
Outlet	(hrs)	Peak Flow (m ³ /s)	Runoff Volume (m ³)	Peak Flow (m³/s)	Runoff Volume (m ³)	Peak Flow (m³/s)	Runoff Volume (m ³)		
A / 100	6	0.25	1,700	0.46	3,020	1.22	7,700		
B / 100+101		0.93	7,670	1.69	13,560	4.41	34,290		
C / 102		1.06	10,760	1.90	19,170	4.92	48,370		
D / 103		0.33	1,760	0.61	3,110	1.59	7,830		
							(m ³) 7,700 34,290 48,370 7,830		
			Si	orm Event	Return-Pei	riod			
Key Flow Point / Subcatchment	Storm Duration	2	Si -yr		Return-Pei yr)-yr		
Key Flow Point / Subcatchment Outlet	Storm Duration (hrs)	2 Peak Flow (m ³ /s))-yr Runoff Volume (m ³)		
Subcatchment	Duration	Peak Flow	-yr Runoff Volume	5- Peak Flow	yr Runoff Volume	100 Peak Flow	Runoff Volume		
Subcatchment Outlet	Duration (hrs)	Peak Flow (m ³ /s)	-yr Runoff Volume (m ³)	5- Peak Flow (m ³ /s)	yr Runoff Volume (m ³)	100 Peak Flow (m ³ /s)	Runoff Volume (m ³)		
Subcatchment Outlet A / 100	Duration	Peak Flow (m ³ /s) 0.29	Runoff Volume (m ³) 2,680	5- Peak Flow (m ³ /s) 0.46	yr Runoff Volume (m ³) 4,190	100 Peak Flow (m ³ /s) 1.06	Runoff Volume (m ³) 9,250		

Table 2 Existing Conditions Hydrologic Model Results

Site Development and Impact Assessment March 10, 2014

3.0 Site Development and Impact Assessment

Development of the *Site* is understood to involve the construction of above ground switchyard infrastructure, small buildings, and access roads. The specific construction activities pertaining to the hydrogeologic and hydrologic assessment are summarized as follows:

- Of the total *Project Area* of approximately 63 ha, it is understood that the switchyard infrastructure and small buildings will be located within the *Site* boundaries, covering roughly 17 ha. The *Site* is shown on Figure 2;
- Aside from internal access roads and relatively small concrete bases necessary to support specific infrastructure components, the switchyard is to be predominantly constructed upon a sub base of granular materials (depth depending on soil conditions) with a top layer consisting of 400 – 450 mm depth of ¾" crushed stone, required due to the grounding system installed below grade;
- The development involves grading within the *Site* boundaries from an existing ground surface of approximately 248 m AMSL to 259 m AMSL to a more level area ranging from 253 m AMSL to 254 m AMSL. Depending on the specific location within the *Site*, the grading ranges from placing up to 5 m of fill material to the excavation of up to 6 m of native overburden material. In general, excavation will be completed at the eastern extent of the *Site*, with the fill to be placed at the western extent of the *Site* to create a generally level grade for the transformer station;
- A perforated and solid pipe stormwater conveyance system underlying the granular base will be installed to remove at-surface water and convey water percolating through the granular top layers away from the core switchyard / transformer for discharge northward to the south branch of the Harmony Creek tributary;
- The piped drainage system is designed to route stormflow to a single discharge point at the north limits of the *Project Area*; and,
- Specific spills containment measures will be incorporated at the two transformer locations, in the form of concrete containment pits from which effluent will discharge to holding tanks acting as an oil-water separator, with sufficient storage volume provided to contain 100% of the transformer oil volume plus a 100-year, 24-hour storm. Clean water discharged from the oil-water separator unit will be drained to the piped drainage conveyance system.

Site Development and Impact Assessment March 10, 2014

3.1 HYDROGEOLOGY

As detailed above, development of the *Site* involves placing up to 5 m of fill material at the western extent of the *Site* and the excavation of up to 6 m of native overburden material at the eastern extent of the *Site*.

Based on the water level data from BH11-12, groundwater at the northern extent of the *Site* may be approximately 255 m AMSL. The transformer station's graded ground surface of 253 m AMSL will be approximately 2 m below the interpreted static groundwater level from November 2012. This static water level is likely a seasonal low or near seasonal low following minimal precipitation during summer 2012.

The current ground surface elevation and the *Site's* graded ground surface are presented on Figures 6 and 7. As shown on these figures, the grading is entirely within fine grained material, however, it is anticipated that *Site* grading may extend below the shallow static groundwater level within the east side of the *Site*.

It is expected that any excavation within the eastern portion of the *Site* will result in some shallow groundwater seepage. Groundwater seepage would be collected as part of the storm water collection system around the perimeter of the *Site*. Given the extent of fine grained material within the *Project Area*, the extent of seepage is anticipated to be minimal; however, additional seepage may be present in the event that a localized shallow sand seam is encountered.

The transformer station construction within the *Site* primarily involves grading of fine textured silt till material. Based on the geology and general depth of excavation, no significant changes to groundwater flow / conditions are expected due to the grading, construction, and development scenario. It is anticipated that shallow groundwater flow will remain in a northeast to southwest direction.

The existing interpreted shallow groundwater flow direction is to the southwest towards the tributary of Harmony Creek. Depending on seasonal groundwater elevations and local sediments, shallow groundwater discharge within the *Site* boundaries has been anecdotally reported within local seeps or within the creek tributaries. However, *Site* field investigations have not confirmed these anecdotal reports. Given that no significant impact is anticipated to the overall groundwater regime, no significant impacts are anticipated to the natural heritage features (creeks and wetlands) that may be influenced seasonally by shallow groundwater flow. Furthermore, any groundwater seepage collected by the perimeter collection system resulting from *Site* regrading will be directed via the perimeter collection system to the same tributary of Harmony Creek.

Site Development and Impact Assessment March 10, 2014

As discussed in Section 2.3.3, MOE water well records indicate some nearby private wells are installed within intermittent sand lenses at varying depths ranging from 5.2 m BGS to 108 m BGS, with water-bearing sand and gravel lenses surrounded by lower permeability till. Based on available data, a significant, continuous aquifer was not noted within the local study area. Regional mapping suggests that deep wells may be installed within the top of the Thorncliffe Formation; however, this could not be confirmed based on available data. At all wells, clayey material was noted overlying the screened aquifer material. This clayey material will act as a hydraulic confining unit, minimizing recharge and/or adverse impacts from ground surface to the shallow or intermediate groundwater supply. No adverse impacts due to construction of the transformer station to the underlying Thorncliffe Aquifer are anticipated.

Based on available data, no adverse impacts to nearby private wells or local creeks are anticipated due to *Site* development. Hydraulic testing of on-*Site* monitoring wells and water quality testing of selected nearby residential wells will be completed as a due diligence measure to monitor groundwater conditions and to confirm the assessments presented in this report. The recommended Groundwater and Surface Water Monitoring Program is presented in Section 4.

3.2 HYDROLOGY

The *Site* drainage design for the project is currently in the detailed design phase, and will be subject to Environmental Compliance Approval (ECA) for Drainage from the MOE. In terms of assessing the potential impacts on the existing hydrologic condition (surface water) and receiving environs, the following conclusions have been drawn based on current *Site* drainage plans:

- The installation of free-draining granular material at-surface would not, in and of itself, result in result in significant alterations to surface water response to rainfall events from those experienced under existing conditions;
- However, the introduction of an engineered drainage system (grading and tile drainage) will likely result in discharge of runoff at higher peak rates and volumes to the south branch of the Harmony Creek tributary (north of the *Site*) than experienced under existing conditions, particularly for small, frequent events. Conversely, re-directing drainage away from the two, low-lying surficial drains south of the *Site* will reduce both peak flows and volumes to these systems;
- The net impact of this drainage system is not considered to represent a negative impact on the natural environment and could arguably improve conditions within the north and west reaches, providing a more consistent condition of fish habitat and seasonally moist wetland pockets. As such, there are no significant negative surface water impacts anticipated to the natural heritage features as a result of the proposal;
- Alterations within the remaining 36 ha of the *Project Area* outside of the *Site*, including the construction of new towers and access road(s), are also anticipated to result in only minor hydrologic impacts, typically mitigated through the creation of vegetated (grassed) conveyance systems (i.e., ditches); and,

Site Development and Impact Assessment March 10, 2014

• As mentioned in the existing conditions analysis, there are three (3) watercourses located within the *Project Area*, none of which will be directly impacted by the core switchyard / transformer station infrastructure, but crossings of the watercourses will be required as part of the access road system. Any crossings should be designed to manage the peak flows / volumes as presented within the existing conditions hydrologic synopsis.

Groundwater and Surface Water Monitoring Program March 10, 2014

4.0 Groundwater and Surface Water Monitoring Program

4.1 OBJECTIVES

The following Groundwater and Surface Water Monitoring Program has three primary objectives: to fulfill Hydro One's commitment to implement a pre, during, and post transformer station construction groundwater and surface water monitoring program; to refine our understanding of the physical and chemical characteristics of the shallow and intermediate depth groundwater systems at the *Site*; and to establish a pre-construction baseline of groundwater conditions, including seasonal variations of groundwater quality, quantity, and surface water / groundwater interaction. The monitoring data collected will provide the technical foundation on which to assess whether adverse impacts occurred during or post construction.

4.2 MONITORING PROGRAM SCOPE

The Groundwater and Surface Water Monitoring Program includes several key tasks, including installing new groundwater monitoring wells (completed in Fall 2013), implementing a private well monitoring program, surface water monitoring, decommissioning of geotechnical monitoring wells (completed Fall 2013), water level and water quality monitoring, and preparing annual monitoring summary reports through the duration of the monitoring program.

Complementing the groundwater monitoring program, surface water features located on the north (wetland), west (creek), and south (drainage swale) sides of the *Site* will be monitored. Background water levels within three newly installed shallow piezometers (mini shallow wells) will be recorded prior to construction of the transformer station, and compared to monitoring results recorded during and post construction. The monitoring data collected will provide the technical foundation on which to further characterize our understanding of the shallow groundwater system, to assess whether adverse impacts occurred during or post construction, and to provide guidance for appropriate mitigation, if needed.

Owners of private wells on properties immediately adjacent to the east and south of the *Site* will be able to have the water level and water quality in their wells monitored prior to, during, and post construction of the transformer station. A baseline of seasonal normal groundwater levels and groundwater quality will be established prior to construction of the transformer station. Once construction of the transformer station begins, the well monitoring program will continue with observations compared to baseline conditions, allowing for an assessment of potential impacts on the natural environment and of the efficacy of the engineered containment structures and water treatment systems to be installed.

Groundwater and Surface Water Monitoring Program March 10, 2014

Groundwater and surface water data collected prior to construction of the transformer station will help define the relationship between the shallow and intermediate depth groundwater systems at the Site and how they interact with each other; providing a baseline to which monitoring data collected during construction and post construction will be compared. Specifically, the Groundwater and Surface Water Monitoring Program will allow for quantification of the following hydrogeological characteristics of the site:

- Refinement of Site geologic stratigraphy;
- Seasonal shallow and intermediate groundwater water levels across the site;
- Seasonal shallow and intermediate groundwater chemistry;
- Vertical groundwater gradients (identify areas of upward, neutral, or downward groundwater movement) between surface water and shallow groundwater system, and shallow and intermediate depth groundwater systems;
- Shallow and intermediate depth hydraulic conductivity, including variations in hydraulic conductivity associated with the different geologic materials identified during previous and recent drilling programs;
- Continuous (hourly) groundwater level monitoring to allow for observation and calculation of seasonal variations in surface water, groundwater, and private wells; and,
- Potential changes in shallow groundwater elevation associated with the cut portion (east side) of the grading area, including the potential radius of groundwater influence, and potential for private well interference.

The hydrogeologic conditions presented in the Project ESR will be confirmed through the analyses and interpretation of groundwater and surface water data collected prior to construction of the transformer station. The monitoring program will continue during and post construction of the transformer station in order to confirm that the mitigation measures and engineered containment structures designed to protect the natural form and function of the surface water system, shallow and intermediate groundwater systems, and the adjacent private water wells are functioning as designed.

This monitoring program will also be adaptive. Changes to the monitoring program and/or laboratory analyses may be implemented, as determined by Hydro One and its environmental consultant, depending on the monitoring results and interpretations derived from them.

4.3 MONITORING INSTALLATIONS

The Groundwater and Surface Water Monitoring Program takes into consideration potential adverse impacts of the project on the natural environment in the absence of implementing any mitigations measures (containment structures, water treatment, etc.). These include the introduction of chemical substances and changes to the natural form and function of the shallow and intermediate depth groundwater and surface water systems. As a result, the depths of the monitoring wells, monitoring frequency, and selected water quality analyses of the entire monitoring program have been selected with detection of potential changes to these receptors as their primary objective.

Groundwater and Surface Water Monitoring Program March 10, 2014

4.3.1 Site Monitoring Wells

The groundwater monitoring wells installed at the *Site* during the previous geotechnical investigations were all installed at an intermediate depth (screened between approximately 11 m and 15 m depth). These monitoring wells were located where excavations for footings or foundations are planned, and as a result, needed to be decommissioned prior to construction of these foundations.

In the Fall of 2013, this monitoring program was initiated by installing pairs of new monitoring wells on each side of the *Site* (Figure 1). The new intermediate depth (approximately 10 m to 15 m depth) wells have been paired with shallow depth wells (approximately 1 m to 3 m depth) intended to intersect the elevation of the shallow water table. By installing pairs of shallow and intermediate depth wells, changes in groundwater levels, groundwater chemistry and vertical hydraulic gradients (upward or downward movement of groundwater) will be able to be measured and monitored seasonally prior to, during, and post construction of the transformer station.

Drive point piezometers (shallow mini wells) have also been installed within *Site* surface water features in order to monitor seasonal shallow groundwater and surface water levels within the wetland (north side), creek (west side) and drainage swale (south side) features found on-*Site*.

The new groundwater monitoring wells were installed according to the MOE Water Resource Act (O. Reg. 903). A licensed well drilling contractor was retained and has completed the following:

- Installation of three (3) stream/wetland drive-point piezometers;
- Drilling and installation of four (4) shallow and intermediate depth pairs of groundwater monitoring wells (8 wells in total); advanced to depth of approximately 1 to 3 metres and 10 to 15 metres, respectively;
- Complete grouting (sealing) of outer well annulus;
- Installation of protective and lockable well casing; and,
- Decommissioning of former geotechnical wells according to the MOE Water Resource Act (O. Reg. 903).

Upon completing installation of the new monitoring wells in December 2013, the water level in several wells were observed to have recovered slowly, with some not recovering sufficiently after several days to allow for a collection of water quality samples. Monitoring of the new wells will continue with the completion of a water level monitoring event in Winter 2014, noting if any wells are frozen.

In Spring 2014, the new wells will be further developed, hydraulically tested (slug testing) to confirm estimates presented in the Project ESR, and sampled for groundwater quality. Selected representative soil samples obtained and preserved during drilling will be submitted for laboratory sieve grain size analyses.

Groundwater and Surface Water Monitoring Program March 10, 2014

4.3.2 Private Well Monitoring

A review of the MOE water well record database indicates that there are approximately 10 wells registered with the MOE on properties immediately to the east and south of the *Site*. The private well monitoring program will include providing notification to all potential groundwater users immediately adjacent to the *Site*, informing the property and/or well owners of the transformer station construction schedule, and the parameters of the private well monitoring program. The notification information will provide the details of the monitoring program, and include appropriate project contact information for Hydro One regarding construction concerns. During the door-to-door site visits, Stantec will also make note of and attempt to contact well owners that may not appear in the MOE's records for the purpose of offering participation in the private well monitoring program.

Participation in the private well monitoring program will only be completed with the owner's authorization, and will include water quality sampling and water level monitoring, depending on well accessibility. Water level monitoring involves installing an automated well water level logger (pressure transducer), which can only be completed at accessible wells by a licensed well contractor. The automated loggers will monitor 'continuous' water levels (at 5 to 60 minute intervals) from Spring 2014 until two years following completion of construction. The loggers would be removed at the end of the monitoring program.

Private well water quality samples will be collected from a raw water tap (prior to any treatment or filtration), where available. If no raw water tap is present, a sample may be collected directly from the well, depending on well accessibility and well owner authorization. After purging water from the well, the samples will be collected directly into laboratory supplied sample containers. The samples will not be field filtered and will be submitted for general chemistry, turbidity, metals, hydrocarbons (F1-F4 and BTEX), and bacteriological analyses. To supplement and provide quality assurance, temperature, conductivity, and pH data will be collected in the field at the time of sampling.

Individual private well analytical results will be presented in a letter to each resident following each sampling event along with the available water level data. Private well data will remain confidential, and is not permitted to be shared with the general public. However, monitoring reports for data collected on-*Site* will be prepared annually and made available to the public by Hydro One.

Groundwater and Surface Water Monitoring Program March 10, 2014

4.4 SURFACE WATER MONITORING

A Stantec terrestrial ecologist will monitor the *Site* prior to transformer station construction to confirm the presence or absence of groundwater seeps within the *Project Area*, identifying notable indicator parameters and plant species. Ecological monitoring will continue annually during construction of the transformer station, and for two years following completion of construction. Surface water levels and water quality samples will be collected from three (3) surface water monitoring locations (at piezometer installation locations) and submitted for laboratory analyses following the monitoring schedule discussed below.

4.5 WATER QUALITY ANALYSES

Groundwater water quality samples from each of the new on-*Site* monitoring wells and participating private wells will be collected according to laboratory protocols, preserved, and submitted for laboratory analyses (general chemistry, metals, and hydrocarbons (F1-F4 and BTEX)) to Maxxam Analytics, an accredited laboratory. Well water quality parameter analyses will be compared to Ontario Drinking Water Quality Standards (ODWQS).

Surface water quality samples will be collected from each of the three new surface water monitoring locations adjacent to the new piezometer installations (when surface water is present) according to laboratory protocols, preserved, and submitted for laboratory analyses (general chemistry, metals, and hydrocarbons (F1-F4 and BTEX)) to Maxxam Analytics. Surface water quality parameter analyses will be compared to Provincial Water Quality Objectives (PWQO).

A water quality parameter list is included in Appendix A.

4.6 MONITORING SCHEDULE

The Groundwater and Surface Water Monitoring Program schedule frequency is designed to record groundwater levels continuously with the use of automated pressure transducers, and to seasonally (quarterly) collect groundwater and surface water quality samples for laboratory analyses for the first year of monitoring in order to establish potential seasonal variations in groundwater levels and chemistry. Table 3 presents the program water quality sampling schedule. Following the first year of quarterly (seasonal) monitoring, the schedule will change to semi-annual monitoring (spring and fall). Upon completion of construction, monitoring of groundwater, surface water, and private wells will continue semi-annually for two years.

For scheduling purposes, it is anticipated that quarterly seasonal monitoring will take place from Fall 2013 to Summer 2014; semi-annual (construction) monitoring will continue from Fall 2014 through to Fall 2017; and semi-annual post-construction monitoring will extend for 2 years following completion of construction. Presently construction is anticipated to be completed in Fall 2017, with this monitoring program continuing until Fall 2019.

Groundwater and Surface Water Monitoring Program March 10, 2014

Table 3Monitoring Schedule

Pre-Construction and Construction Monitoring Schedule												
2013					20	14		2015				
Winter	Spring	Summer	Fall	Winter	Spring	Summer	Fall	Winter	Spring	Summer	Fall	
			Х	Х	Х	Х	Х		Х		Х	
2016					20	17						
Winter	Spring	Summer	Fall	Winter	Spring	Summer	Fall					
	Х		Х		Х		Х					
	Post-Construction Monitoring Schedule											
2018					20	19						
Winter	Spring	Summer	Fall	Winter	Spring	Summer	Fall					
	Х		Х		Х		Х					

4.7 REPORTING

A Baseline Conditions Report will be prepared following the Fall 2014 monitoring event summarizing the Site baseline groundwater and surface water conditions prior to construction of the transformer station.

Subsequent annual monitoring program summary reports will be prepared following the Fall monitoring and sampling events. The reports will present all on-Site groundwater and surface water monitoring data and a general summary of private well water level and water quality data. Private well owners will be provided with the data (water level and water quality) from their own individual well only. In the event an exceedence of the ODWQS is received from the laboratory, the private well owner will be advised of the exceedence immediately upon receipt and review of the laboratory data.

Conclusions and Recommendations March 10, 2014

5.0 Conclusions and Recommendations

Based on the background information reviewed, and hydrogeologic and hydrologic information compiled and summarized herein and in the Project ESR, it is concluded that development of the *Site* should not result in any associated negative impacts on receiving surface water or groundwater systems including to the natural environment (creeks and wetlands) or adjacent private property infrastructure (i.e., water supply wells). It is understood that pre-, during- and post-construction monitoring programs to field verify these conclusions will be implemented.

The following specific conclusions are provided:

- The Clarington Transmission Station is located within the southern boundary of the area delineated by the Oak Ridges Moraine Conservation Plan;
- Stratigraphy within the *Project Area* consists of thick silt till overburden, which is representative of the Newmarket Till with pockets of Halton Till at surface. The till material is considered an aquitard and will impede surface water recharge or groundwater discharge within the *Project Area*. Occasional sand lenses were noted at variable depths and adjacent private wells are installed within these sand lenses;
- CLOCA (2012) mapping indicated that the *Site* is considered low aquifer vulnerability and not an area of significant recharge;
- Shallow groundwater within the *Project Area* flows in the general direction of surficial topography, from northeast to southwest. Shallow groundwater seepage may be occurring in select locations of the *Project Area*, specifically to the southern drains;
- Development of the *Site* includes approximately 5 to 6 m of cut and fill grading of fine textured material consisting of silt till material with excavation at the eastern extent of the *Site* with the fill to be placed at the western extent of the *Site*. The excavation within the eastern portion of the *Site* will result in some shallow groundwater seepage; however, given the fine grained material, the extent of seepage is expected to be minimal. Any seepage would be collected as part of the storm water collection system and discharge to the south branch of the Harmony Creek tributary. No significant changes to groundwater flow / conditions are expected due to *Site* grading, construction, and development scenario. It is expected that groundwater flow will remain in a northeast to southwest direction;

Conclusions and Recommendations March 10, 2014

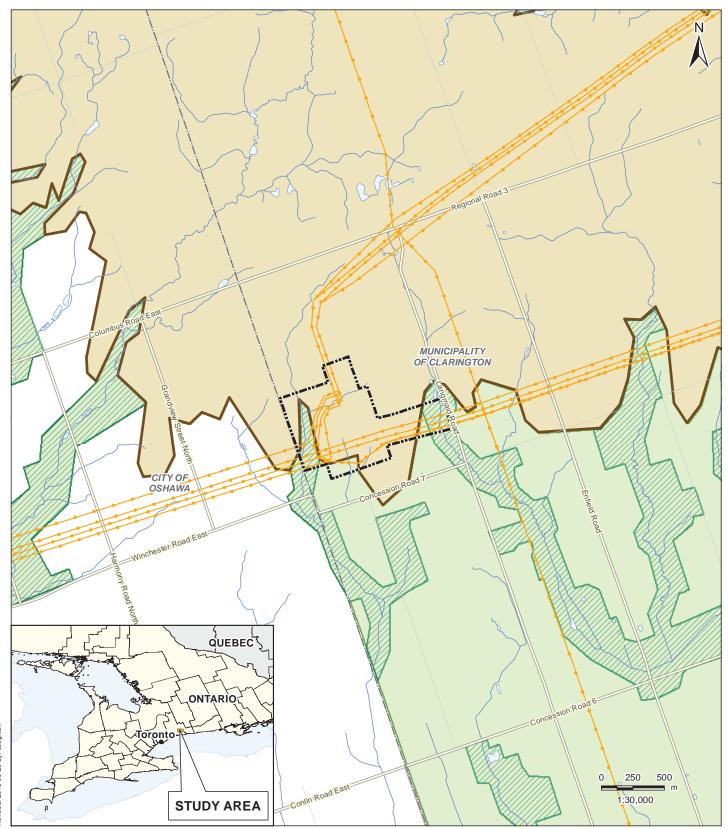
- The majority of nearby private wells are installed within discrete sand deposits, significantly deeper than the *Site* development activity. Available stratigraphy does not indicate the presence of direct hydraulic connection between surficial activities within the *Site* boundaries to the nearby private wells. The degree to which the discrete sand lenses may be hydraulically connected in not known at this time. The deep private wells may be installed within the top of the Thorncliffe Formation; however, this was not confirmed based on available records. The range in well installation and depth suggests that a significant sand aquifer is not located in the vicinity of the *Project Area*. The *Site* development is not expected to significantly impact groundwater flow or quality conditions or affect nearby private wells;
- The net impact on local hydrology is expected to be negligible, and possibly result in an improvement in the surface water receiving systems in Harmony Creek tributary; and,
- The Groundwater and Surface Water Monitoring Program presented in Section 4.0 will fulfill the environmental monitoring commitments made by Hydro One in the Project's ESR by establishing background hydrogeological conditions and by providing a monitoring program that will identify and monitor the natural form and function of the shallow and intermediate depth groundwater system during and post construction.

As proper due diligence, the following monitoring recommendation is proposed:

• Implement the Groundwater and Surface Water Monitoring Program discussed in Section 4.0 of this report to confirm the findings of this assessment and to mitigate potential adverse impacts to the shallow groundwater system and private water well users.

References March 10, 2014

6.0 References


- Chapman, L.J. and D.F. Putnam, 1984. The Physiography of Southern Ontario. Ontario Geological Survey, Special Volume 2, 270 pp.
- CLOCA, 2012. Approved Assessment Report, Central Lake Ontario Source Protection Area. Chapter 4 – Assessing Vulnerability of Drinking Water Sources. January 18, 2012.
- exp Services Inc. 2012. Geotechnical Report Clarington TS, Municipality of Clarington. Project No. BAR-00025036-A0, June 19, 2012.
- Hydro One Networks Inc., 2008. Enfield Transformer Station, Class Environmental Assessment, Final Environmental Study Report. August 2008.
- Hydro One Networks Inc., 2012. Clarington Transformer Station, Class Environmental Assessment, Draft Environmental Study Report. Project No. 590-CLEA-12-11, November 2012.
- Inspec-Sol Inc. 2013. Geotechnical Investigation Clarington Transformer Station (TS). Report T040774a1, January 23, 2013.
- Geological Survey of Canada, 2001. Regional three-dimensional stratigraphic modeling of the Oak Ridges Moraine area, Southern Ontario.
- Ontario Geological Survey (OGS). 2003. Surficial Geology of Southern Ontario.
- Ontario Ministry of Municipal Affairs and Housing (MMAH). 2002. Oak Ridges Moraine Conservation Plan (ORMCP).
- Ontario Ministry of Municipal Affairs and Housing (MMAH). 2005. Greenbelt Plan. February 29, 2005. 57 pp.
- Singer, S.N., C.K. Cheng and M.G. Scafe. 2003. The Hydrogeology of Southern Ontario. 2nd edition. Ministry of the Environment, Hydrogeology of Ontario Series (Report 1). April 2003.
- Stantec Consulting Ltd., 2008. Hydro One Proposed Enfield Transformer Station Environmental Baseline. Project No. 1609-60217. Prepared for Hydro One Networks Inc., March 2008.

Appendix A Figures March 10, 2014

Appendix A Figures

Watercourse

Utility Line

Municipal Boundary

Greenbelt - Natural Heritage System = Major Road Local Road

Greenbelt - Protected Countryside

Oak Ridges Moraine Waterbody

Notes

Coordinate System: NAD 1983 UTM Zone 17N
 Base features produced under license with the Ontario

Ministry of Natural Resources © Queen's Printer for Ontario, 2012.

Client/Project

Hydro One Networks Inc. Hydrogeologic & Hydrologic Assessment Report Clarington, Ontario

March 2013 160960745

Figure No. 1

Title

Project Location

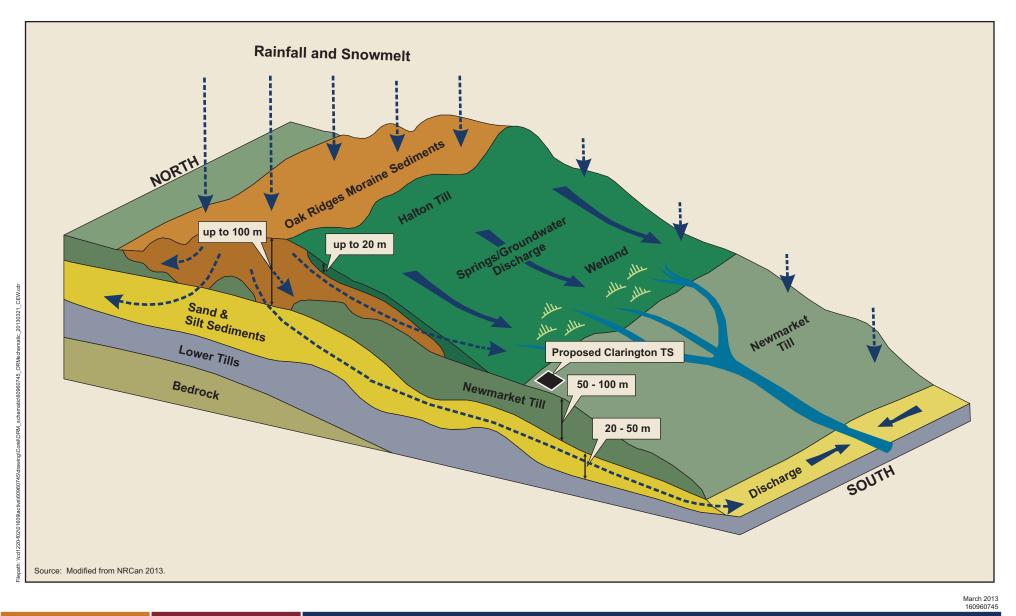
672500 \\cd1220-f02\Work_group\01609\active\60960745\drawing\MXD\Hydrogeology\HydroG_Assess\160960745_HG_Fig02_SitePlan.mxd Revised: 2013-04-11 By: ccoghlan

Legend

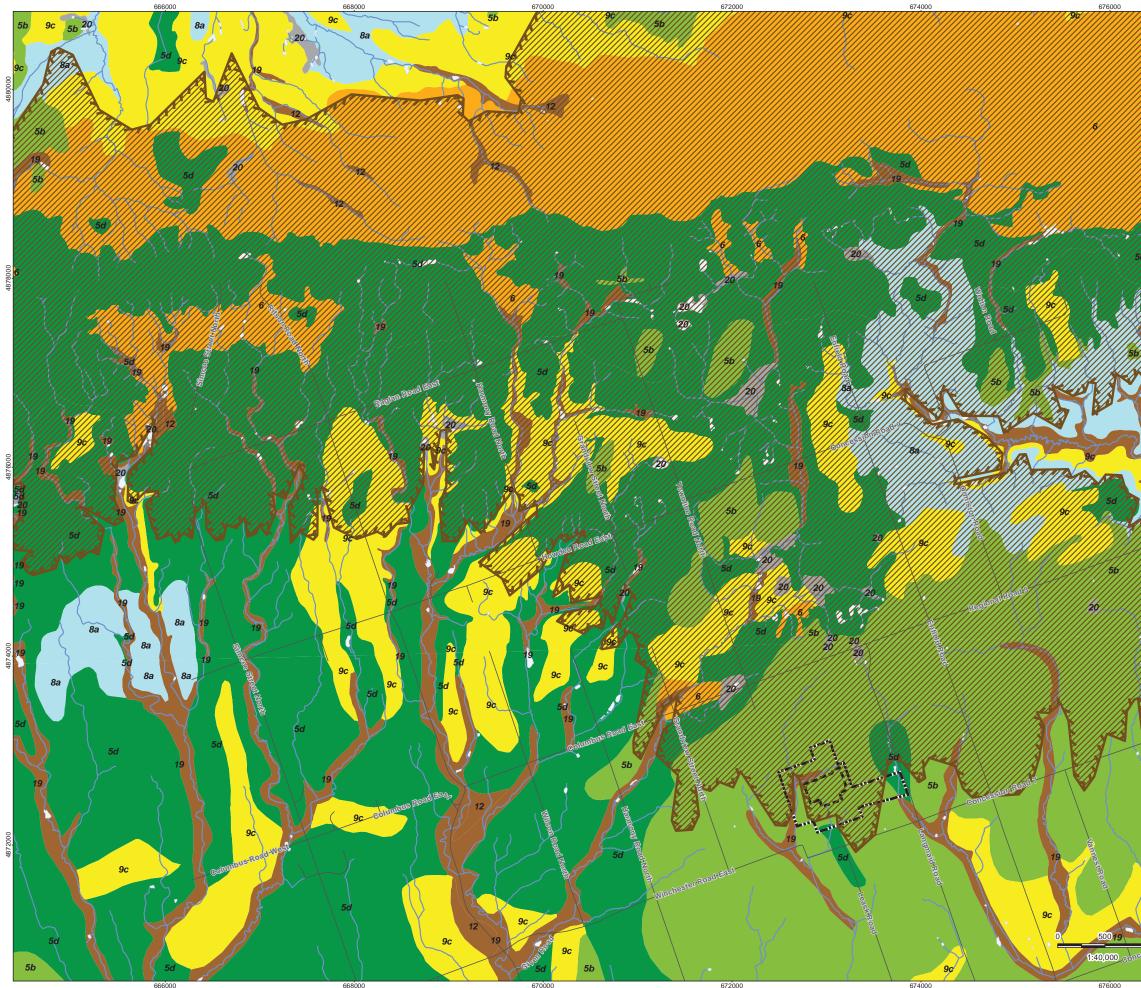
- Monitoring Well (Inspec-Sol, 2012)
- ⊕ Monitoring Well (EXP, 2012)
- Borehole (Inspec-Sol, 2012)
- Borehole (EXP, 2012)
- MOE Water Well Record \odot
- Project Area
- Proposed Development Area
 - Cross-Section Location
 - Topographic Contour (mAMSL)
- Watercourse
- Waterbody

Notes

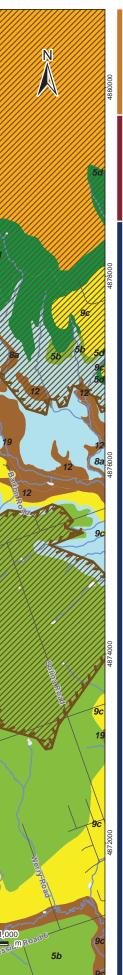
- 1. Coordinate System: NAD 1983 UTM Zone 17N
- 2. Base features produced under license with the Ontario Ministry of Natural Resources © Queen's Printer for Ontario, 2012.
- 3. Orthoimagery © First Base Solutions, 2012.
- 4. Topography derived from the MNR Digital Elevation Model - Version 2.0.0 - Provincial Tiled Dataset (DEM) © Queen's Printer for Ontario, 2006.


Hydro One Networks Inc. Hydrogeologic & Hydrologic Assessment Report Clarington, Ontario

igure No.


2

Project Site Plan


April 2013 160960745

672000

Legend

Notes

- 1. Coordinate System: NAD 1983 UTM Zone 17N
- Base features produced under license with the Ontario Ministry of Natural Resources © Queen's Printer for Ontario, 2012.
- Surficial geology produced by the Ontario Geological Survey 2003. Surficial geology of Southern Ontario; Ontario Geological Survey, MRD 128.

Client/Project

Hydro One Networks Inc. Hydrogeologic & Hydrologic Assessment Report Clarington, Ontario

April 2013 160960745

igure No.

4

Regional Surficial Geology

- Monitoring Well (Inspec-Sol, 2012)
- ⊕ Monitoring Well (EXP, 2012)
- Borehole (Inspec-Sol, 2012)
- Borehole (EXP, 2012)
- MOE Water Well Record

Project

- Proposed Development
- ------ Watercourse
- Oak Ridges Moraine

	Waterbody	
Surfi	cial Geology	

20: Organic deposits

19: Modern alluvial deposits

9c: Coarse-textured glaciolacustrine deposits (Foreshore-basinal deposits)

6: Ice-contact stratified deposits

5b: Stone-poor, carbonate-derived silty to sandy till (Newmarket Till)

5d: Glaciolacustrine-derived silty to clayey till (Halton Till)

Notes

9c

- 1. Coordinate System: NAD 1983 UTM Zone 17N
- 2. Base features produced under license with the Ontario Ministry of Natural Resources © Queen's Printer for Ontario, 2012.
- Surficial geology produced by the Ontario Geological Survey 2003. Surficial geology of Southern Ontario; Ontario Geological Survey, MRD 128.

April 2013 160960745

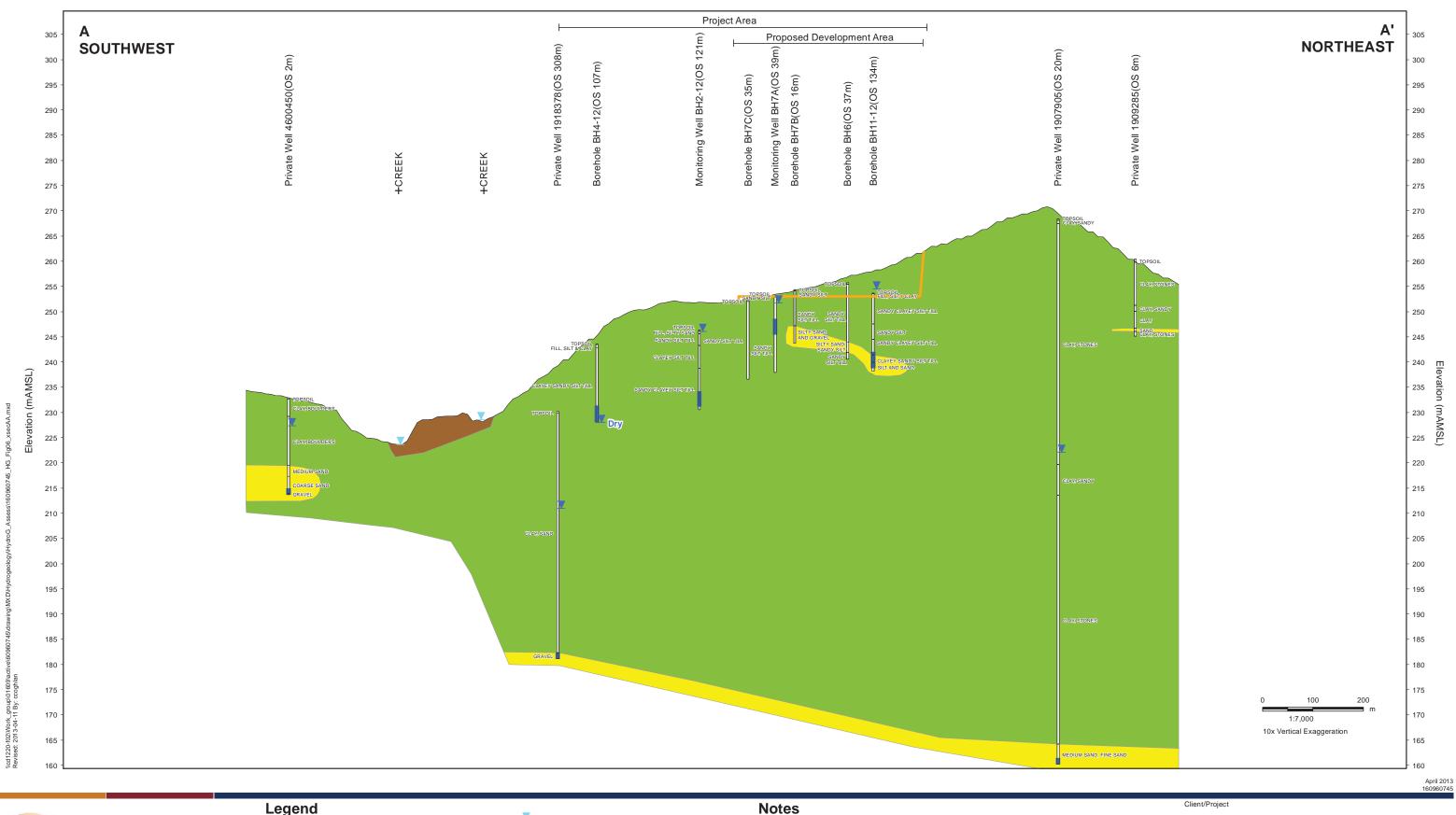

Client/Project Hydro One Networks Inc. Hydrogeologic & Hydrologic Assessment Report Clarington, Ontario

Figure No.

5

ītle

Project Area Surficial Geology

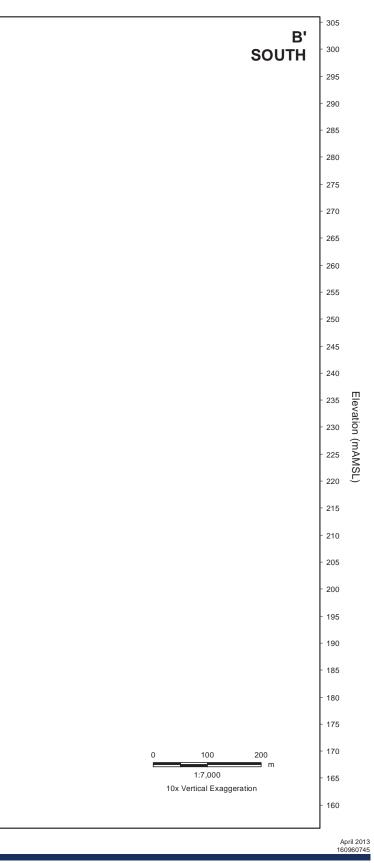

Hydro One Networks Inc. Hydrogeologic & Hydrologic Assessment Report Clarington, Ontario

Figure No.

6

Title

Cross-Section A-A'



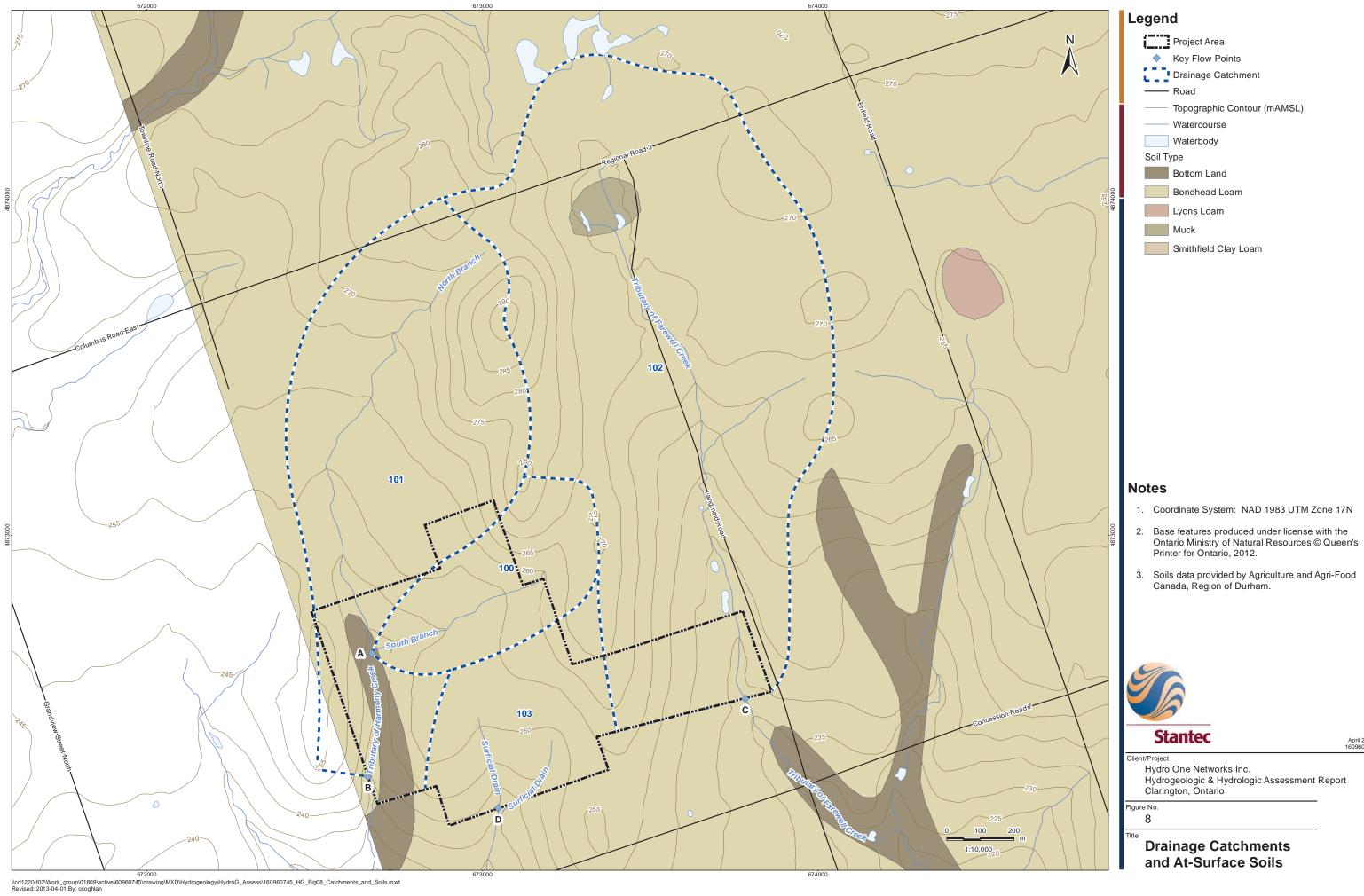


Figure No.

7

Title

Cross-Section B-B'

April 2013 160960745

673000

674000

Legend

- Project Area
- Key Flow Points
- Drainage Catchment
 - Topographic Contour (mAMSL)

Notes

- 1. Coordinate System: NAD 1983 UTM Zone 17N
- Base features produced under license with the Ontario Ministry of Natural Resources © Queen's Printer for Ontario, 2012.
- 3. Orthoimagery © First Base Solutions, 2008.

Client/Project

Hydro One Networks Inc. Hydrogeologic & Hydrologic Assessment Report Clarington, Ontario

April 2013 160960745

Figure No. 9

> Drainage Catchments and Aerial Imagery

Legend

_	1		Ċ	
1	7		_	J
		1		

Monitoring Well (Stantec, 2013)

- Piezometer (Stantec, 2013)
- ----- Existing Power Feature
- New Infrastructure
- Topographic Contour (mAMSL)
- Watercourse
- Project Area Clarington TS Site

Notes

- 1. Coordinate System: NAD 1983 UTM Zone 17N
- 2. Base features produced under license with the Ontario Ministry of Natural Resources © Queen's Printer for Ontario, 2012.
- 3. Orthoimagery © First Base Solutions, 2012.

Client/Project

Hydro One Networks Inc. Hydrogeologic & Hydrologic Assessment Report Clarington, Ontario

February 2014 160960745

-igure No.

10

Groundwater & Surface Water Monitoring Locations

HYDROGEOLOGIC & HYDROLOGIC ASSESSMENT REPORT CLARINGTON TRANSFORMER STATION

Appendix B Borehole Logs March 10, 2014

Appendix B Borehole Logs

Project No.	BAR-00025036-A0								Fig	ure No.		2
Project:	Clarington TS								Sh	eet No.	1	of
City/ Municipality;	Municipality of Clarington,	Ontario										
Location:								Comb	alible) (ee	ous Deedice	г	-
Date Drilled:	May 17, 2012		-	Sample					l Moisture	our Reading	-	
Drill Type:	Hollow Stem Augers		,	N) Value nic Cone ⊺	Fest	0 0	-		and Liquid ned Triaxia			0
Datum:				y Tube ∕a∩e Test				% Stra	in at Failur ometer		⊕ ▲	
				Vano 1631		S	F	1 diluti	omotor			
SYMBO		ELEV.	DEP	20	N Value 40 60			2	50 500		pm)	San
	Soil Description	m	H She	20 ar Strength			kPa 00	Attert	oral Moistur perg Limits (0 20	re Content % (% Dry Weigl 30	nt)	Nun
TO	PSOIL: Sandy Silt, Dark Brown,	246.79	0 6		100							8
	NDY SILT: Brown, Moist	246.4	Ŏ				_	100	×			S
	ose]	/ ^{240.1}	9	1.12				-		21 - 12	1	
	NDY SILT TILL: Trace Gravel, soil and Rootlets, Brown, Moist to	-	1 0						×			S
Dar		245.3										
		<u>i</u>		Õ				×				s
Gra	NDY SILT TILL: Trace to Some vel, Wet Sand Seams, Brown to	-	2				-				P	2
	y, Damp to Moist	4					87 O	×				s
[Co	mpact to Very Dense]						0	^				20,
111			3		1	9	for 279	^{mm} ×	15/11	1		S
		-					-0-	^				4 3/
H1												
SAI	NDY SILT TILL: Some Gravel,	242.7	4			, i i e	0.155		1112		-	
Tra	ce Clay, Wet Sand Seams, Grey,	_										-
XX	ry Dense]			-		70	\$	×				s
L've		_	5									2
KI-		241.2		1		12				1212		
SAL	VDY SILT TILL: Trace to Some vel, Grey, Damp to Moist											
KI M	ry Dense]	3	6	- f	i0 for 127 m	m		×		11 11		S
IL Ive	iy Densej	-	111							-	2	4 0,
					1 - 11							
KI		-	7									
H-		_							1.7.5		UT:	
K/						9	2 for 279	^{mm} ×				s
		-	8	-							1	4
		-			11	511		385			11	
					14.1	i n		1.800	1.5			
		100	9	6	50 for 127 m	m				1	-	-
HL		-			0		1	×				S/
			1.51	- 5.1	and the state		1	121	1.1	11111		

Continued Next Page

exp. Services Inc.Borehole data requires
interpretation assistance fr561 Bryne Drive, UnitD Exp before use by others.Barrie, ON L4N 9Y3See Figures 1A and 1B forf: +1.705.734.6224Notes on Sample Description

Borehole data requires interpretation assistance from

See Figures 1A and 1B for Notes on Sample Descriptions.

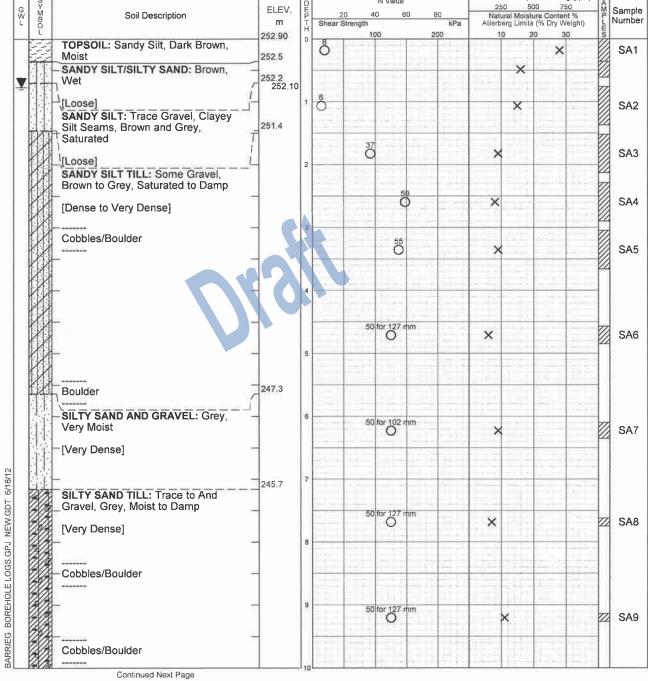
Depth to Cave (m) Water Time Level (m) 14.3 Upon Completion 14.4

PIDIECLIND DAIL-DUUZJUJU-AL	Project No.	BAR-00025036-A0
-----------------------------	-------------	-----------------

Claringto TC Figure No. 2

SYMBOL G∛L	Soil Description	ELEV. m 236.79	DEPTH 10	Shear 8	Strength	N Value 10 6	50 E	80 kPa 00	2: Nat Atlerb	stible Vapour Re 50 500 ural Moisture Co berg Limits (% D 0 20	750	W420-JEW	Sample Numbe
			11					91 Ö	*				SA1(
	Boulder 	-	12					98 for 21	54 mm				SA1
	SANDY SILT TILL: Some Gravel, Trace Clay, Grey, Moist to Damp [Very Dense]	233.5	14				85 fc	or 254 mm O	×				SA1
	Boulder	231.1	15					85 O	×				SA1
	END OF BOREHOLE NOTE: DCPT was completed between 8.5 and 10.1 metres approximately 1.5 metres north of BH12B												

exp. Services Inc.Borehole data requires
interpretation assistance fr
561 Bryne Drive, Unit D
Exp before use by others.Barrie, ON L4N 9Y3
t: +1.705.734.6222See Figures 1A and 1B for
Notes on Sample Description


Borehole data requires interpretation assistance from

Water Level (m) 14,3 Depth to Cave (m) 14.4 Time Upon Completion

	LOG 01	Borenoie	BH	2		
Project No.	BAR-00025036-A0			Figure No.	3	
Project:	Clarington TS			Sheet No.	of	2
City/ Municipality:	Municipality of Clarington, Ontario					
Location:		-		Combustible Vapour Reading		
Date Drilled:	May 16, 2012	Auger Sample SPT (N) Value		Natural Moisture	×	
Drill Type:	Hollow Stem Augers	Dynamic Cone Test Shelby Tube		Plastic and Liquid Limit Undrained Triaxial at % Strain at Failure	0 ⊕	
Datum:	i 	Field Vane Test	s	Penetrometer	•	
G W B	Soil Description ELEV.	D N Value E 20 40 60	0 80	Combustible Vapour Reading (pp 250 500 750 Natural Moisture Content %	- M Sa	ample

Τ.

Т

exp. Services Inc. 561 Bryne Drive, Unit D Exp before use by others. Barrie, ON L4N 9Y3 t: +1.705.734.6222 See Figures 1A and 1B for f: +1.705.734.6224

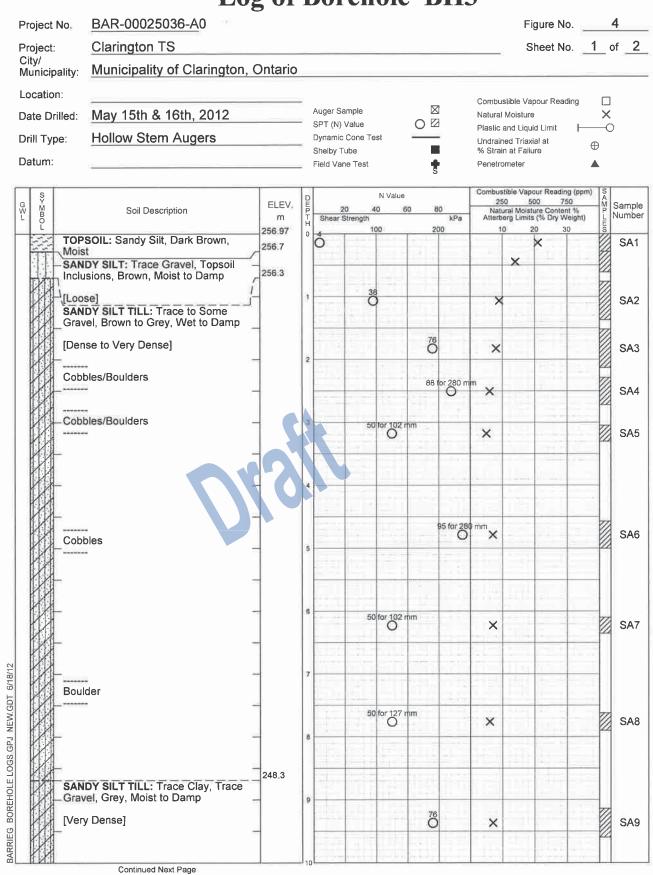
Borehole data requires interpretation assistance from

See Figures 1A and 1B for

Notes on Sample Descriptions.

Water Level Depth to Cave Time (m) (m) 0.8 Upon Completion 1.4

oject											gure N			
oject	Clarington TS	1	Ť			N137-1	_		Combus		heet N		-	of
S≻⊠BOL	Soil Description	ELEV. m 242.90	DUPLE		Strength	N Value <u>0 6</u> 00	60 8 20	kPa	25 Nate Atterb	50 50 ural Moist erg Limits	00 7: ure Conter (% Dry W	50	© A∑r luo	Sam Num
		242.90	10							<u>v, </u> 2			3	
	-		11		50	for 127 r	nm	8	×				Z	SA
		-241.3	ľ			70	for 102 m	im					ZZ	SA
	AUGER REFUSAL ON PROBABLE BOULDER								u Fi					
										-				
				1.					$\{\cdot\}_{i}$					
						-						-		
					41									
						4								
							1							
											1.			
											24 1 1 1			



exp. Services Inc.Borehole data requires
interpretation assistance from561 Bryne Drive, UnitD Exp before use by others.Barrie, ON L4N 9Y3Exp before use by others.t: +1.705.734.6222See Figures 1A and 1B for
Notes on Sample Descriptions

Borehole data requires

Time	Water Level (m)	Depth to Cave (m)
Upon Completion	0_8	1_4

Notes on Sample Descriptions.

exp. Services Inc. 561 Bryne Drive, Unit D Exp before use by others. Barrie, ON L4N 9Y3 t: +1.705.734.6222 See Figures 1A and 1B for f: +1.705.734.6224

Borehole data requires interpretation assistance from

Depth to Water Time Cave Level (m) (m) Upon Completion 12.5 14.3

1	s		1				N Value			Combu		our Readin	g (ppm)	S	
1	SY MBO	Soil Description	ELEV.						30	2: Nat	50 50 ural Moist	00 75 ure Conten i (% Dry W	i0 it %	-MP	Samp
	P L		m 246.97	4	Shear :	Strength 1	00	2	kPa 00			(% Dry W		04Zo July	Numb
1	껪		240.97	10										Ĭ	
K	И		-		-					_			_		
ľ	X							72 Ö		×				0	SA1
				11		1	1			~				12	0/1
		-							-			-			
	M	SILT TILL: Some Sand, Trace to	245.2												
E		-Some Clay, Trace Gravel, Grey, Moist -		12	-						1.1.7.1				
k		[Very Dense]	244,47					73 O		×	_				SA
]											P	
ľ			-	13											
1	×	SANDY SILT TILL: Trace to Some	243.7					114				_			
1	1	[→] Gravel, Occaisional Wet Seams, Grey, [→] Damp to Moist	1								1 2 2			1	
	11	[Very Dense]	1	14	-		1	68 O		×					SA
	И	[very Dense]				-				1.1				14	
1	柗					-	2								
	UI.			15						_					
K	H			K			-	1	94 for 254	mm		-		1	
l	K)	-	241.3						94 for 254	×			-	0	SA
		END OF BOREHOLE				1.1					1711				
						-			-				-		
					-	1.1	-		1.1						
											-				
	1														
							-				-				
											-				
									1				-		
						- 11				_					
						-	-								
							2.4								
					- MG	× 1						-1-7			
								-	13		1E	-			
						132					5 E. F.		-		
														1.1	

exp. Services Inc.Borehole data requires
interpretation assistance from561 Bryne Drive, UnitD Exp before use by others.Barrie, ON L4N 9Y3Exp before use by others.t: +1.705.734.6222See Figures 1A and 1B forf: +1.705.734.6224Notes on Sample Descriptions Notes on Sample Descriptions.

Borehole data requires

Water Level (m) 12,5 Depth to Cave (m) 14,3 Time Upon Completion

og of Boroholo BUA

Project No.	BAR-00025036-A0									Figure	No.		5
Project:	Clarington TS									Sheet	No.	1	of _2
City/ Municipality:	Municipality of Clarington,	Ontario)										
Location:												_	
Date Drilled:	May 25, 2012			Auger S				\boxtimes	Natural N	tible Vapour Re ⁄loisture	ading		
Drill Type:	Hollow Stem Augers			SPT (N) Dynamic) Value c Cone Te	st	0			nd Liquid Limit d Triaxial at	H	()
Datum:			-	Shelby -	Tube				% Strain	at Failure		⊕	
Datam.			-	Field Va	ine Test			s	Penetror	neter			
GY		ELEV.	P			N Value			250	ble Vapour Read	750) S A M	Camp
GWL GWL	Soil Description	m	DUPTH		Strength		50	80 kPa	Natur Alterbei	al Moisture Con rg Limits (% Dry		I) SAMPLES	Sampl Numbe
TOP:	SOIL: Dark Brown, Moist	252.01 251.8	0	8	1	00		200	10	20	30	S	
SAN Tops	DY SILT TILL: Some Gravel, oil Inclusions, Brown, Moist	_		Ő					×				SA1
[Loos		251.3		-		-						1	
SAN	DY SILT TILL: Some Gravel,		4		36 O		-					×	SA2
KIZI	n, Damp	_			50	for 127	-					2	
×	se to Very Dense]					Ő			×				SA3
Bould	der	-	2	-									
		_		_			62						
\mathcal{D}				-			0		×	10			SA4
11-		-	3		1::		84 f	or 254 mm					
								0	×				SA5
Bould	der												
KK		+	4										
			1										
					50	for 127r	m		×				SA6
		-	5	-	1			12.00		5 K I 3 - 10 - 10			
					121			1					
		-	6		50	for 127r	nm		~			-	04-
						0			×				SA7
				-						-			
		244.9	7		(Y			1.1	114				
	DY SILT TILL: Trace Gravel, e to Some Clay, Grey				-				12.00		2 112-12		
[Very	Dense]				-		88	8 for 254 m	m ×				SA8
H-		-	8						0.0			-4	
		_			Sector.				17.15				
												7	
		-	9			50						-77	
11		_				50 O		1.1.1.1	×			0	SA9
					121			110				4	
	Continued Next Page	_	10		E. I.							~	

exp. Services Inc.Borehole data requires
interpretation assistance fr561 Bryne Drive, UnitD ExpBarrie, ON L4N 9Y3Expt: +1.705.734.6222See Figures 1A and 1B for
Notes on Sample Description

Borehole data requires interpretation assistance from

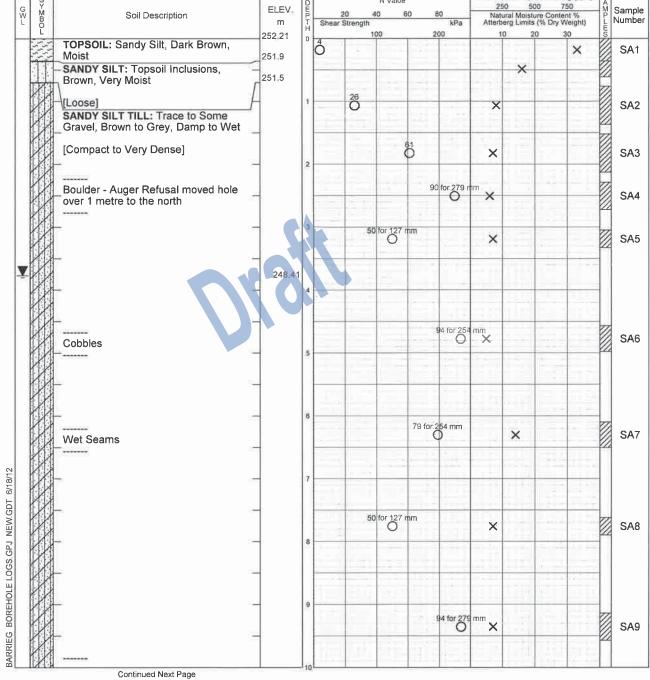
See Figures 1A and 1B for Notes on Sample Descriptions,

Depth to Cave (m) Water Time Level (m) Upon Completion Dry 15.6

Project No. BAR-00025036-A0

Figure No. 5

Project	Clarington TS					N Value		1		stible Vap	heet No	g (ppm)	-	
SY MBOL	Soil Description	ELEV. m	DUPTH	2 Shear \$	Strength	10 (50 8	kPa.	2 Nat Allert	50 5 ural Moist erg Limits	00 75 ure Conten s (% Dry We	0 t % eight)	042P-1E0	Samp Numb
	CLAYEY SILT TILL: Some Sand, – Trace Gravel, Occaisonal Wet Sand Seams, Grey, Moist – [Hard]	242.01 241.8 	10		1	47 0	20	00	×	0 2	20 30)	01	SA1
		239.5	12		4 4		8		×					SA1
$\langle \rangle \rangle \langle \rangle$	SANDY SILT TILL: Some Clay, Some Gravel, Grey, Moist to Damp [Very Dense] —Boulder		13											
			14				Ö		_×					SA
	CLAYEY SILT TILL: Trace Gravel,	236.4			33 O				×					SA
	Grey, Moist [Hard] END OF BOREHOLE							7						
					E-				-					


exp. Services Inc.Borehole data requires
interpretation assistance from
561 Bryne Drive, Unit D
Exp before use by others.Barrie, ON L4N 9Y3
t: +1.705.734.6222See Figures 1A and 1B for
Notes on Sample Descriptions

Borehole data requires

Depth to Cave (m) 15,6 Water Level (m) Dry Time Upon Completion

Notes on Sample Descriptions.

	Log	of	Borehole	BH	5	
Project No.	BAR-00025036-A0				Figure No.	6
Project:	Clarington TS				Sheet No.	1 of 2
City/ Municipality:	Municipality of Clarington, O	ntario				
Location:					Combustible Vapour Reading	
Date Drilled:	May 15, 2012		Auger Sample SPT (N) Value		Natural Moisture	×
Drill Type:	Hollow Stem Augers		Dynamic Cone Test Shelby Tube		Plaslic and Liquid Limit Undrained Triaxial at % Strain at Failure	
Datum:	3		Field Vane Test	5	Penetrometer	•
SYM GWL	Soil Description	ELEV _s	D N Value P 20 40 6	60 80 kPa	Combustible Vapour Reading (pp 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight	M Sample

* ex

exp. Services Inc. 561 Bryne Drive, Unit D Exp before use by others. Barrie, ON L4N 9Y3 t: +1.705.734.6222 See Figures 1A and 1B for f: +1.705.734.6224

Borehole data requires interpretation assistance from

Time	Water Level (m)	Depth to Cave (m)
Upon Completion	3.8	6.1

	Log	of	Borehole	BH5	
BAR-00025036-A0					

Figure No. 6

roject	Clarington TS		_	_	_						No.		
ş		_	D			N Value	•			ble Vapour Rea 500		SA	
SYMBOL	Soil Description	ELEV. m	DEPTH			40	60	80	250 Natur	al Moisture Cor rg Limits (% Dr	750 Itent %	SAXP LES	Samp Numb
l C		242.21		5-107-2.1624	Strength 1	00	3	kPa 200	Atterber 10		y vveight) 30	Smr	Nume
IN	Boulder	242.21	10								Ĩ	Ŭ	
M					-	1							
$ \mathcal{M} $		-			50	for 127	mm	1.1				-	
N		241.2				of for 127			×			Ø	SA
	AUGER REFUSAL ON PROBABLE							19-10-0			in S		
	BOULDER - END OF BOREHOLE								-	12, 11			
				1.11		1	1						
					1111	1.1		1715		1.2			
					-1- I			11.1.7			1 211 21		
				1.51									
						100							
				- 15	- 1		1				1- IZ-1		
					-		115						
									212				
								1			1 417		
					_								
				-		-				41			
						-		12.2			1.5	-	
			R			1.1		114-14		Contraction of the			
						1					-		
						1.5							
											-		
				-		111							
				-	1.1.1					1.1.1	-		
							1				1 2 2		
							-						
						1.00					1 1 1		
						1	1	5	2			1	
											-		
				-		-	1						
					-								
					-		1.						
							2211						
					-	-							
				-							inst.		
				-	1.00					- 112 I-I-X			
								-					
					1								
				-					-				
				1.1.1	1.1		1.777						
					1111	11							
				111							the second se		
						1241							
				1.1			-						

Project No.

exp. Services Inc.Borehole data requires
interpretation assistance from561 Bryne Drive, UnitD Exp before use by others.Barrie, ON L4N 9Y3Exp before use by others.t: +1.705.734.6222See Figures 1A and 1B for
Notes on Sample Descriptions

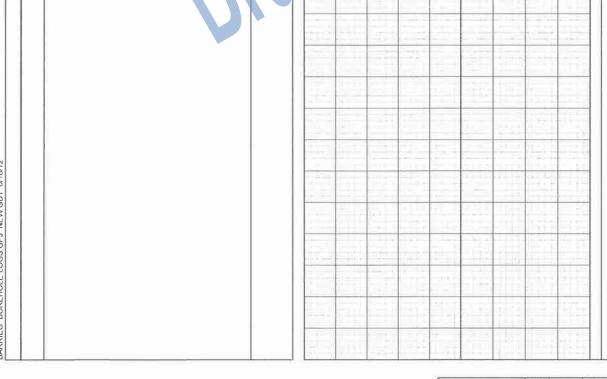
Borehole data requires

Water Level (m) 3.8 Depth to Cave (m) 6,1 Time Upon Completion

Project: City/	Clarington TS										
	Municipality of Clarington,	Ontario						Sh	eet No.	1 (of
Municipality: Location: Date Drilled: Drill Type: Datum:	May 28, 2012 Hollow Stem Augers	Ontario	SPT (N Dynam Shelby	Sample I) Value ic Cone T Tube ane Test			Natural Plastic a Undrain	Moisture and Liquid ed Triaxia n at Failun	at	⊂	•
SY MBOL	Soil Description	ELEV. m	INI	r Strength	N Value 40 60	80 kPa 200	250	o 500 ral Moistur erg Limits (e ContenI % % Dry Weight)	- <u>Ř</u>	Samp Numb
~~	SOIL: Sandy Silt, Brown, Moist	255,73 255,4	° 7 Ö			200		×	30	Ŷ	SA
Grav	DY SILT TILL: Trace to Some vel, Brown to Grey, Moist to Wet npact to Very Dense]		1	8			×				SA
			2	26 O			×				SA
¥.		252 83	3	Č)		×				SA
			4	31 0			×				SA
			5		73 fc	or 279 mm	×				SA
			6	50	o for 102 mm		×			772	SA
		_	7		0 for <u>7</u> 6 mm						
			8		0		×			ZZ	SA
			9	50	o for 127 mm		×			ZZ	SA

Continued Next Page

exp. Services Inc.Borehole data requires
interpretation assistance from
Exp before use by others.561 Bryne Drive, Unit
Barrie, ON L4N 9Y3
t: +1.705.734.6222
f: +1.705.734.6224Borehole data requires
interpretation assistance from
Exp before use by others.See Figures 1A and 1B for
Notes on Sample Descriptions


Depth to Cave (m) Water Level Time (m) 2.9 Upon Completion 5.8

Notes on Sample Descriptions.

			og ot	B	orehole	RH	b			
Proj	ect No.	BAR-00025036-A0					Fi	gure No.		7
Proj	ect:	Clarington TS					S	heet No.	2	of 2
Ŵ	S Y M B O L	Soil Description	ELEV. m 245.73	DEPTH SI	N Value <u>20</u> <u>40</u> <u>60</u> hear Strength 100	80 kPa 200	Natural Moist Atterberg Limits	00 750	â	Sample Number
<u> </u>		Y SAND/SANDY SILT: Grey, to Saturated	244.0	11	50 for 102 mm		×		No.	SA10
	[Ver	y Dense]	-	13	50 for 127 mm		×			SA11
	Grey	IDY SILT TILL: Some Gravel, /, Moist to Very Moist y Dense]	241.9	14	50 for 76 mm.		× ×			SA12

50 for 102 mm

BARRIEG BOREHOLE LOGS GPJ NEW.GDT 6/18/12

END OF BOREHOLE

exp. Services Inc.Borehole data requires
interpretation assistance fr561 Bryne Drive, UnitD Exp before use by others.Barrie, ON L4N 9Y3See Figures 1A and 1B fort: +1.705.734.6224Notes on Sample Description

Borehole data requires interpretation assistance from

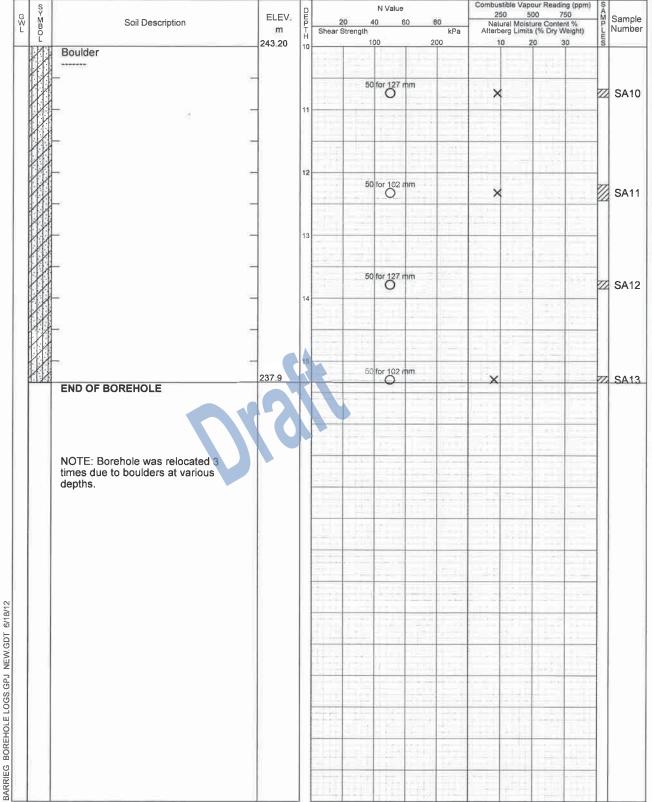
See Figures 1A and 1B for Notes on Sample Descriptions.

Water Level (m) 2.9 Depth to Cave (m) Time Upon Completion 5.8

SA13

Project No.	BAR-00025036-A0						Figure No.		8
Project:	Clarington TS						Sheet No.	1_	of 2
City/ Municipality:	Municipality of Clarington,	Ontario							_
Location:						Combustible	e Vapour Reading	Г	1
Date Drilled:	May 24th & 25th, 2012		Auger S SPT (N)			Natural Moi	isture	×	- C
Drill Type:	Hollow Stem Augers		Dynamic	c Cone Test		Undrained ⁻		——(⊕	C
Datum:			Shelby T Field Va		.	% Strain at Penetrome			
s				N Value			Vapour Reading (pp	TT) S	
G M W B L O	Soil Description	ELEV. m		20 40 Strength	60 80 kPa	250 Natural I Atterberg I	500 750 Moisture Content % Limits (% Dry Weight	π) SA P 	Sample Numbe
L ಕ್ರಮ್ಮ್ TOP	SOIL: Sandy Silt, Dark Brown,	253 20	0	100	200	10	20 30	COLINIC	SA1
Mois	DY SILT: Topsoil Inclusion.	252.9 252.8			1.1	×		- H	O/(I
Brow	/n, Moist							0	
	se]		1	34 O		×	1. 1. 1. 1.		SA2
	el, Brown to Grey, Damp to Wet	251.60							
[Loos	se to Very Dense]			⁴²		×	11 11 12		SA3
Bould	der		2			114 0			
11-		-		8		×			SA4
			3						
11				50 for 127	mm	×			SA5
-//-			4	and a second				-	
									ł
				50 for 127	mm	×			SA6
			5	1 and 1					
			-						
Bould	der								
			6	50 for 140	mm	×			SA7
		-							
			2						
			1						
	-	-		50 for 102	mm	×		Z	SA8
	1		8			^			
Bould	der								
					and the second		11.1.1		
11-			9	E04 405					
				50 for 102	nm	×			SA9
	-				11111				

Continued Next Page



exp. Services Inc.Borehole data requires
interpretation assistance from561 Bryne Drive, UnitD Exp before use by others.Barrie, ON L4N 9Y3Exp before use by others.t: +1.705.734.6222See Figures 1A and 1B for
Notes on Sample Descriptions

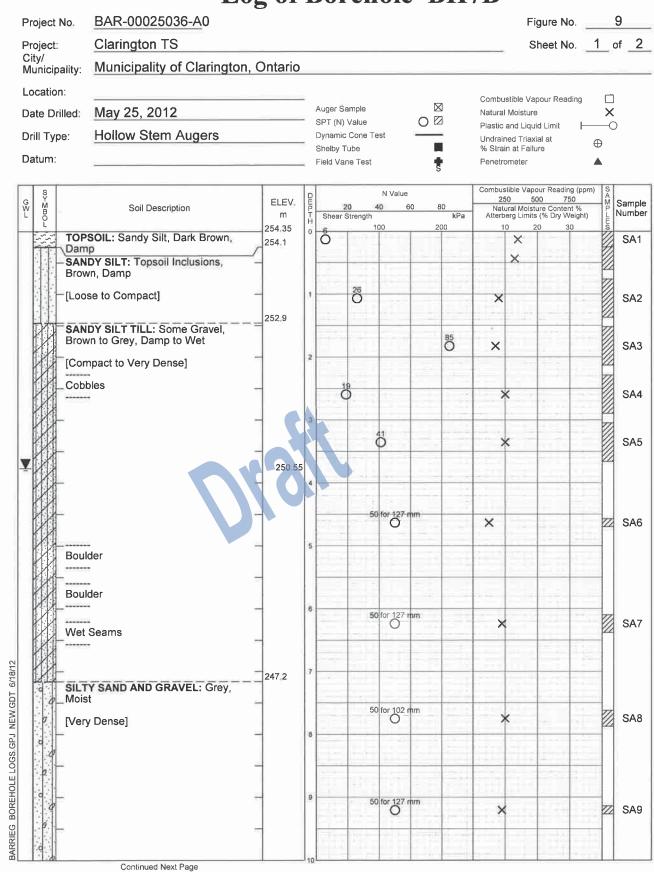
Borehole data requires

Depth to Cave (m) Water Time Level (m) Upon Completion 4.9 5.3 May 28, 2012 1.5 May 29, 2012 2.4 June 6, 2012 1.6

	Log of	f Boi	rehole	BH7A	
BAR-00025036-A0					Figure No.
Clarington TS					Sheet No.
	ĺ	D	N Value	Combust	ible Vapour Reading (p

Project No.

Project:


exp. Services Inc. 561 Bryne Drive, Unit D Exp before use by others. Barrie, ON L4N 9Y3 t: +1.705.734.6222 f: +1.705.734.6224

Borehole data requires interpretation assistance from

Water Level Depth to Cave (m) Time (m) Upon Completion 4.9 5.3 May 28, 2012 1.5 May 29, 2012 2.4 June 6, 2012 1.6

8

2 of 2

exp. Services Inc. 561 Bryne Drive, Unit D Exp before use by others. Barrie, ON L4N 9Y3 t: +1.705.734.6222 See Figures 1A and 1B for f: +1.705.734.6224 Notes on Sample Descriptions.

Borehole data requires interpretation assistance from

Water Depth to Time Level Cave (m) (m) Upon Completion 3.8 7.5

Project No.	BAR-00025036-A0

Clarington TS

Project:

Figure No. 9

Sheet No. 2 of 2

SY		EL EV	P			N Value			Combu 2	stible Vap	our Readir 500 7	ng (ppm) 50	SAM	
SYMBOL	Soil Description	ELEV: m	DWPH	Shear	20 4 Strength	<u>0</u> E	60 E	80 kPa	Nal Atlert	ural Mois	oour Readir 500 7 ture Conte s (% Dry V 20	nt % Veight)	50.1	Sampl Numbe
		244.35	H 10			00	2	00	1	0	20	30	ŝ	
90	Boulder					-	1				÷ = .	-		
0		243.7		-								-		
-P-I	AUGER REFUSAL ON PROBABLE	LIGH	T				-				1.0		Ħ	
	BOULDER - END OF BOREHOLE							-	1		1224	-		
				- 17					-	1.111	_			
													11	
				1 18	514	1000								
					1							-	11	
				1			100		-					
				1			1.1	-						
					-	-								
								7	£					
				e ing			-					1		
					1.00									
					1	-				1.11				
										-		-		
											1.000	_		
													1	
						-								
								-	-					
				_			_				_		11	
					11			-				-		
				-			-		-					
				2							1		11	
			1	1.1	-								11	
							_		_					
				_		-	-					-		
						-					10.10		11	
						·								
					100		12		-					
									1					
											-			
						1.1	1011							
											-			
											-			

exp. Services Inc.Borehole data requires
interpretation assistance fr561 Bryne Drive, UnitD ExpBarrie, ON L4N 9Y3Expt: +1.705.734.6222See Figures 1A and 1B for
Notes on Sample Descript

Borehole data requires interpretation assistance from

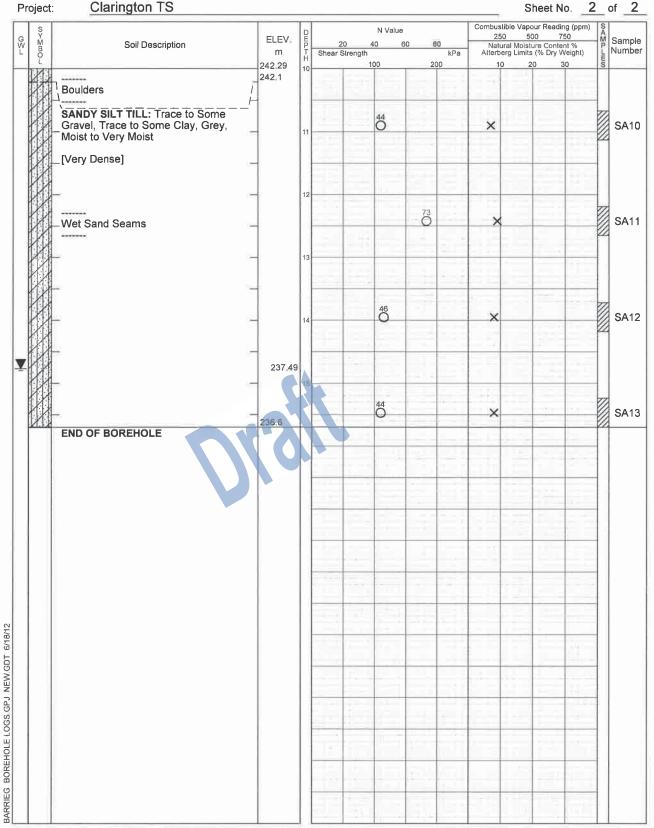
Depth to Cave (m) 7,5 Water Level (m) Time Upon Completion 3.8

Log of Rorehole BH7C

Project No.	BAR-00025036-A0	'g vi						Figur	e No	1	0
Project:	Clarington TS							Shee	t No1	0	f_2
City/ Municipality:	Municipality of Clarington	, Ontario)								
Location:							Comb	untible Managur	Deeding		
Date Drilled:	May 30, 2012		Auger					ustible Vapour I Moisture	Reading	×	
Drill Type:	Hollow Stem Augers			i) Value ic Cone Test		0 🖾		and Liquid Lir ned Triaxial at		-0	
Datum:			Shelby Field V	Tube ane Test			% Stra	in at Failure	e	Ð	
			Field V	2110 1 631		s	Feneu	oneter			
SYMBO GWL		ELEV.	DEP		Value 60	80	2	stible Vapour R 50 500	750	SAM	Samp
G M W B L O L	Soil Description	m	H Shear	Strength	50	kPa 200		lural Moisture C berg Limits (% [10 20	ontent % Dry Weight) 30		Numb
TOP	SOIL: Sandy Silt, Dark Brown,	252,29	° Ö	100		200		×		Ø	SA1
Dan SAN	IDY SILT TILL: Trace to Some	-1					>			0	
Gra	vel, Trace Wet Seams, Brown to y, Damp to Moist		Ξ.	6						0	
[Co	mpact to Very Dense]	1	1 2	Ď		1100150	>			0	SA
1-										0	
				33 O				×		0	SA
- M			*								
Bou	Ilders					86 for 279 mr	×			0	SA
				-	(67)						
				SUTO	0 ¹²⁷ m	n	×				SA
			4					124-1-			
Cot	bbles and Boulders			100							
		1			102.mm	n	×				SA
		-	5							-	
	u Idara		1								
	lders	(7)-1				100					
1/-		-	6	50 for	127 mr	n				77	0.4-
					0		×			22	SA
		-									
		-	7								
		_			78						
1			-	0100	0 0		×			zz	SA
Bou	 Iders	-	8								
			1	12		1.5					
Bou	 Ilders							11212			
11		-	9		54					7	
Occ	aisional Clayey Silt Seams	-	5		54 O		×				SAS
										M	

Continued Next Page

exp. Services Inc.Borehole data requires
interpretation assistance fr
561 Bryne Drive, Unit D
Exp before use by others.Barrie, ON L4N 9Y3
t: +1.705.734.6222See Figures 1A and 1B for
Notes on Sample Description

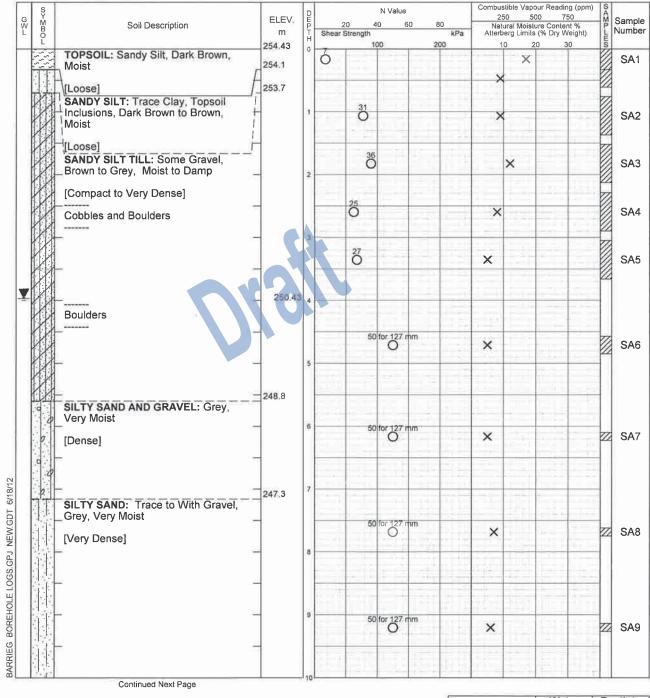

Borehole data requires interpretation assistance from

Depth to Cave (m) 15.2 Water Level Time (m) 14,8 Upon Completion

BAR-00025036-A0 Project No.

Project:

10 Figure No.



exp. Services Inc. 561 Bryne Drive, Unit D Exp before use by others. Barrie, ON L4N 9Y3 t: +1.705.734.6222 f: +1.705.734.6224

Borehole data requires interpretation assistance from

Depth to Cave Water Time Level (m) (m) Upon Completion 14.8 15.2

Log of Borehole BH7D BAR-00025036-A0 Project No. Figure No. 11 Sheet No. 1 of 2 Clarington TS Project: City/ Municipality of Clarington, Ontario Municipality: Location: \square Combustible Vapour Reading \boxtimes Auger Sample Date Drilled: May 25,2012 Х Natural Moisture 0 🛛 SPT (N) Value Plastic and Liquid Limit -0 Hollow Stem Augers Drill Type: Dynamic Cone Test Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Datum: Field Vane Test ţ Penetrometer Combustible Vapour Reading (ppm) N Value S

exp. Services Inc. Barrie, ON L4N 9Y3 t: +1.705.734.6222 f: +1.705.734.6224

interpretation assistance from 561 Bryne Drive, Unit D Exp before use by others. See Figures 1A and 1B for

Notes on Sample Descriptions.

Borehole data requires

Water Depth to Time Level Cave (m) (m) Upon Completion 4.0 4.7

Project No. BA	R-00025036-A0
----------------	---------------

Figure No. 11

roject:	Clarington TS	1	1	 _				Combustible	Sheet No.	1.0	
S Y B O L	Soil Description	ELEV. m 244.43	DUPTH	0 4 Strength		50 8	kPa 00	250	/apour Reading (ppm) 500 750 oisture Content % mits (% Dry Weight) 20 30	- Â	Sampl Numbe
			10		for 102	-		×			SA1
	-	_	12	50	for 127	m		×		Z	SA1
	Boulders SANDY SILT TILL: Some Gravel, Grey, Damp - [Very Dense]	241.2	13 14	50	for 127	mm		×		Z	SA1
	END OF BOREHOLE	239.1	15	50	for 127	dim		*		-774	-SA1
								Yan II	1222120		

exp. Services Inc.Borehole data requires
interpretation assistance fr561 Bryne Drive, UnitD Exp before use by others.Barrie, ON L4N 9Y3See Figures 1A and 1B forf: +1.705.734.6224Notes on Sample Description

Borehole data requires interpretation assistance from

Depth to Cave (m) Water Time Level (m) Upon Completion 4.0 4.7

Project: City/ Municipality: Location: Date Drilled: Drill Type: Datum:	Clarington TS Municipality of Clarington, May 22, 2012	Ontario						Sheet No	1_	of _1
Municipality: Location: Date Drilled: Drill Type:	May 22, 2012	Ontario								
Date Drilled: Drill Type:										
Drill Type:									_	-
							Natural Mois	Vapour Readi sture	ing [-
	Hollow Stem Augers		 SPT (N Dynami) Value ic Cone T	est	0 0	Plastic and L Undrained T			С
			Shelby Field V	Tube ane Test			% Strain at F Penetromete	Failure	⊕ ▲	
	2			and rest		S	1 cheaomete	51		
SY MB U		ELEV.	D	20	N Value 40 60	80	250	Vapour Reading 500 750		Sampl
G M W B L O L	Soil Description	m	T Shear	Strength	100	200 kPa	Atlerberg Li	imits (% Dry We 20 30	ighl)	Numbe
TOP Mois	SOIL: Sandy Silt, Dark Brown,	251.21 250.9	°Ö			200		×	Ů	SA1
SAN	DY SILT TILL: Some Gravel,	250.5		-			×	1.2.2		
	soil Inclusions, Brown, Damp	1 250.5		29		1.1			7	
	se to Compact] DY SILT TILL: Some Gravel,	7	1	29 O			×			SA2
	vn, Damp to Moist	-					12213 22			
[Cor	npact to Very Dense]			0 Ö			×			SA3
			2					1 - 10	1	
		-		-	43 O		×			SA4
		7 5			54		~			SA5
1-				-	0		×			5A5
Cob	bles					1.1.1.1.1	1.01			
SILT	- Y SAND TILL: Trace Gravel,	247.1	,							
Grey	(, Damp	-	12.0	5	0 for 127 mr	n	×			SA6
[Ver	y Dense]	_	5			1.1	a taé da	11 22		
							153 6			
		-				1.1				
Bou	- ders	_	6	5	0 for 127 m	n				
	-				0 for 127 mir		×		Z	SA7
		-				181 11 8				
		244.1	7							
	DY SILT TILL: Trace to Some /el, Grey, Damp				-					
	y Dense]	1		5	o for 102 mir	п	×			SA8
	y Densej	_	8			-1-1				
		_			1			-		
								P . 44		
		-	9		o for 76 mm	1	~			0.40
111		241,8			0		×	-	ZZ	SA9
	ER REFUSAL ON PROBABLE			121			-) + + +		414	

exp. Services Inc.Borehole data requires
interpretation assistance from
Exp before use by others.561 Bryne Drive, Unit
Barrie, ON L4N 9Y3
t: +1.705.734.6222Borehole data requires
interpretation assistance from
Exp before use by others.561 Bryne Drive, Unit
Barrie, ON L4N 9Y3
t: +1.705.734.6222Borehole data requires
interpretation assistance from
Exp before use by others.561 Bryne Drive, Unit
Barrie, ON L4N 9Y3
t: +1.705.734.6222See Figures 1A and 1B for
Notes on Sample Descriptions.

Time	Water Level (m)	Depth to Cave (m)
Upon Completion	4_3	4.4

Pro	ject	No.	BAR-00025036-A0										Fi	gure No)	1	3	
	ject:		Clarington TS				_						S	heet No	. <u>1</u>	0	f _2	
Cit Mu	y/ nicip	ality:	Municipality of Clarington	, On	tario													
Lo	cation	n:		_								Comb	buslible Vapour Reading					
Da	e Dr	illed:	May 18, 2012			Auger Sample 🛛							Natural Moisture					
Dri	Тур	e:	Hollow Stem Augers				Dynamic	Cone T	est	<u> </u>		Undra	and Liqui	al at	•	-0		
Da	um:			_			Shelby T Field Va				s		ain at Failu rometer	ire	▲			
G	SY MB			E	ELEV.	P			N Value			2	50 50	our Reading	g (ppm) 0	SAMP	Samp	
G W L	BOL		Soil Description		m 12.49	DEPTH		Strength	40 6 100		80 kPa 200	Atter	berg Limits	ure Content (% Dry We	i % aighl)	PLUS	lumbe	
	555	TOP: Mois	SOIL: Sandy Silt, Dark Brown, t		2.45	0	ð						>	<			SA1	
3 .1 .	H	SANI Brow	DY SILT: Topsoil Inclusions, m, Moist	-	1.8		-		1.17		13.5		×					
1] [Loos		H		1		24 O				×				à	SA2	
	И	SAN Grav	DY SILT TILL: Trace to Some el, Brown to Grey, Moist to Very	_						-								
T	$\langle \rangle$	Mois			240,49		Č	ð		-			×			2	SA3	
	X		npact to Very Dense]			ŕ												
		_Silty	Clay Seams	-			C C						×			0	SA4	
2.1.2	14	Wet	- Sand Seams	-		3				-	-							
1.01		Contractor	Sand Seams					ð					×		-	2	SA5	
1	X	Samo		70												2		
× • •		23		4		4												
×		Cobb	bles and Boulders							84 f	or 279 mm				-	7		
	X					5			1	011	0 279 mm	×		-		A	SA6	
		Deale	e de se															
	U	Bould	aers	-				1.1			E							
	M	-		-		6		- 5	0 for <u>1</u> 27 r	nm						7		
1.1.2	1	-0						9	0 for 127 r			×				2	SA7	
	X														-			
	Ű	-Bould				7												
100	XI-	<u></u>					-	<u>د</u>				-	-			~		
2.	И	-				8		5	0 for 102 r	nm		×					SA8	
2 2	X							1		1	1							
	1			-							1				ile i			
	1	Bould	ders	-		9						-						
1.1.2			6							67 O	1.7	×				1	SA9	
1.1.1	K														R	4		

Continued Next Page

exp. Services Inc.Borehole data requires
interpretation assistance from561 Bryne Drive, UnitD Exp before use by others.Barrie, ON L4N 9Y3Exp before use by others.t: +1.705.734.6222See Figures 1A and 1B for
Notes on Sample Descriptions

Borehole data requires

See Figures 1A and 1B for Notes on Sample Descriptions,

Water Level Depth to Cave (m) Time (m) 2,0 Upon Completion 3.6

Project No.	BAR-00025036-A0	

Project:

Figure No. 13

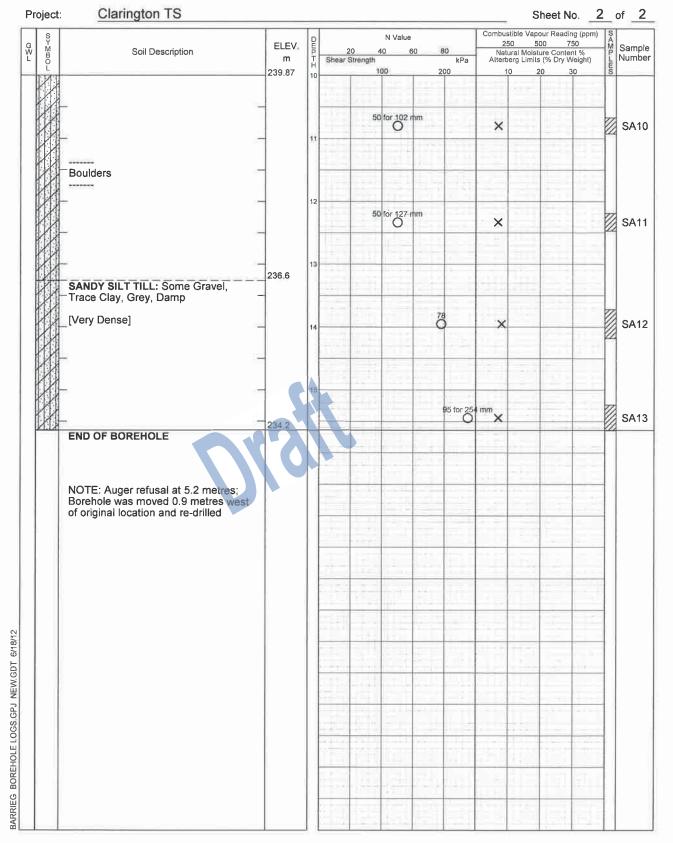
exp. Services Inc. 561 Bryne Drive, Unit D Exp before use by others. Barrie, ON L4N 9Y3 t: +1.705.734.6222 See Figures 1A and 1B for f: +1.705.734.6224 Notes on Sample Descriptions.

Borehole data requires interpretation assistance from

Depth to Cave Water Time Level (m) (m) Upon Completion 2.0 3.6

Project No.	BAR-00025036-A0	5 01								Fig	ure No.		14
Project:	Clarington TS									Sh	eet No.	1	of _2
City/ Municipality:	Municipality of Clarington,	Ontario)										
_ocation:									Quercha		Deedlee		
Date Drilled:	May 22, 2012	Auger Sample Natural							ustible Vapour Reading				
Drill Type:	Hollow Stem Augers		SPT (N) Value O 🖾 Plastic a						and Liquid ned Triaxial)			
Datum:			7	Shelby T Field Var						n at Failure		⊕ ▲	
			-		le Teat		s	5	Felleut	Лівся			
S Y M B O		ELEV.	D		0	N Value		20	25	0 500) S A M	Sampl
₩ V B - O L	Soil Description	m	DUPTH	Shear S	Strength	00		80 kPa 00	Alterb		e Content % % Dry Weight) 30) SAMPLES	Numbe
Dam	SOIL: Sandy Silt, Dark Brown,	249.87	0	9 Ö						×	30	0	SA1
-SAN	DY SILT: Topsoil Inclusions,	249.5								^		-0	SAI
	vn, Moist		1	ő				112					
[Loos	sej		3	0						×			SA2
SAN	DY SILT TILL: Trace to Some	248.4			50	for 127	hm		×	t and a			SA3
NN	el, Brown to Grey, Damp to Moist		2										0/10
[Very	/ Dense]				50	for 127	mm		×		1		SA4
		-						1.1					
			3		50	for 127	mm			_			
			1			0			×			- 72	SA5
Boul	ders				-							1	
			4		4					-			
				1) for 50 r							
						O			×			22	SA6
Bould	ders	-	5				Colorer Colorer						
					-			12.22					
					+	-							
	2		6		-5/	for 76 m	m		×			- 22	SA7
HL.										Sult			
							11.			11-1			
W	>		7										
Boule	aers	-			50	for 127	hm			11	11.0	t	
						for 127			×			72	SA8
K	14		8										
11-		-			(C=1)								
								17		1		-	
			9		50	for 102	ħm		×			H	SA9
	12	-											

*exp


exp. Services Inc.Borehole data requires
interpretation assistance fr561 Bryne Drive, UnitDBarrie, ON L4N 9Y3Exp before use by others.t: +1.705.734.6222See Figures 1A and 1B for
Notes on Sample Description See Figures 1A and 1B for Notes on Sample Descriptions.

Borehole data requires interpretation assistance from

Depth to Cave (m) Water Time Level (m) Upon Completion Dry 15.5

BAR-00025036-A0 Project No.

Figure No. 14

exp. Services Inc. 561 Bryne Drive, Unit D Exp before use by others. Barrie, ON L4N 9Y3 t: +1.705.734.6222 f: +1.705.734.6224

Borehole data requires interpretation assistance from

Depth to Cave Water Time Level (m) (m) Upon Completion Dry 15.5

Project No.	BAR-00025036-A0	8				i	Figure No.	1	5		
Project:	Clarington TS						Sheet No1		of _2		
City/ Municipality:	Municipality of Clarington,	Ontario									
Location: Date Drilled:	May 30, 2012		Auger S SPT (N) Value	O ⊠ ⊠	Natural Moistu	Combustible Vapour Reading Natural Moisture X Plastic and Liquid Limit				
Drill Type: Datum:	Hollow Stem Augers		Shelby			Undrained Tria % Strain at Fa		Ð			
Datum:	2		Field Va	ane Test	s	Penetrometer					
G W L U U	Soil Description	ELEV. m 252.71	H Shear	N Value 20 40 60 Strength 100) 80 kPa 200	250	tpour Reading (ppm) 500 750 sture Content % its (% Dry Weight) 20 30		Samı Numl		
TOP:	SOIL: Sandy Silt, Dark Brown,	252.4	°Ô			×		V	SA		
SANI Tops Brow	DY SILT TILL: Trace Gravel, oil Inclusions, Dark Brown to n, Moist	252.0	3	30 O		×			SA		
Grav	el, Brown to Grey, Damp se to Very Dense}		2	38		×			SA		
Bould		_	215	50 for 102 m	m	×			SA		
Bould			3	-46- O		×			SA		
		5						22			
		-	5	50 for 127 m	m	×.			SA		
Bould	ders	-									
			6		92 for 279 O	×			SA		
		_	7								
			8		2	×			SA		
		-									
Bould	iers S	-	9		86 Ö	×			SA		
					0		1024 22		UA:		

Continued Next Page

exp. Services Inc.Borehole data requires
interpretation assistance from
Exp before use by others.561 Bryne Drive, Unit
Barrie, ON L4N 9Y3
t: +1.705.734.6222Borehole data requires
interpretation assistance from
Exp before use by others.561 Bryne Drive, Unit
Barrie, ON L4N 9Y3
t: +1.705.734.6222Borehole data requires
interpretation assistance from
Exp before use by others.561 Bryne Drive, Unit
Barrie, ON L4N 9Y3
t: +1.705.734.6222See Figures 1A and 1B for
Notes on Sample Descriptions

Water Level (m) 14,8 Depth to Cave (m) 15,2 Time Upon Completion

Notes on Sample Descriptions.

Project No. B	AR-00025036-A0
---------------	----------------

Figure No. 15

,	S Y M B O	Soil Description	ELEV.	DE		20 4	N Value		80	2	50 5	our Readir 00 7:	50	SASP LES	Sample
	BO	Soli Description	m	18		Strength	14.02		kPa						Numbe
	M		242.71	10		1	00	2	200			20 3	0	S	
			-				1	-						7	
		CLAYEY SILT TILL: Some Sand, Some Gravel, Grey, Moist to Wet	= 241.7	11	1	(5			×			1.1.1		SA1
A A A A A A A A A A A A A A A A A A A		[Hard]	-												
A STATES		_	-	12									114		
XXXXXXXXX		_	-		-	33 O			-	×					SA1
		<u>_</u>		13											
The second se		-				-	-		-						
Contraction of the local distribution of the		-	24	14		E.	43 O			,	×				SA1:
Contraction of the local distribution of the			_			2					-		1		
	SANDY SILT TILL: Trace to Some	2373 9 7 91													
	1	Gravel, Trace to Some Clay, Moist to Very Moist		13		38	-								CAA
	XI	[Dense]	237.0			C	1			×			E C		SA1:
		END OF BOREHOLE													
		NOTE: Auger refusal at 5.6 metres; Borehole was moved 0.9 metres west													
		of original location and re-drilled									-		-		
						-						1			
										-					
					- 4										
										1					
													-19		
						3									
									-		-		_		

exp. Services Inc.Borehole data requires
interpretation assistance fr561 Bryne Drive, Unit
Barrie, ON L4N 9Y3
t: +1.705.734.6222Borehole data requires
interpretation assistance fr561 Bryne Drive, Unit
Barrie, ON L4N 9Y3
t: +1.705.734.6222See Figures 1A and 1B for
Notes on Sample Description See Figures 1A and 1B for Notes on Sample Descriptions.

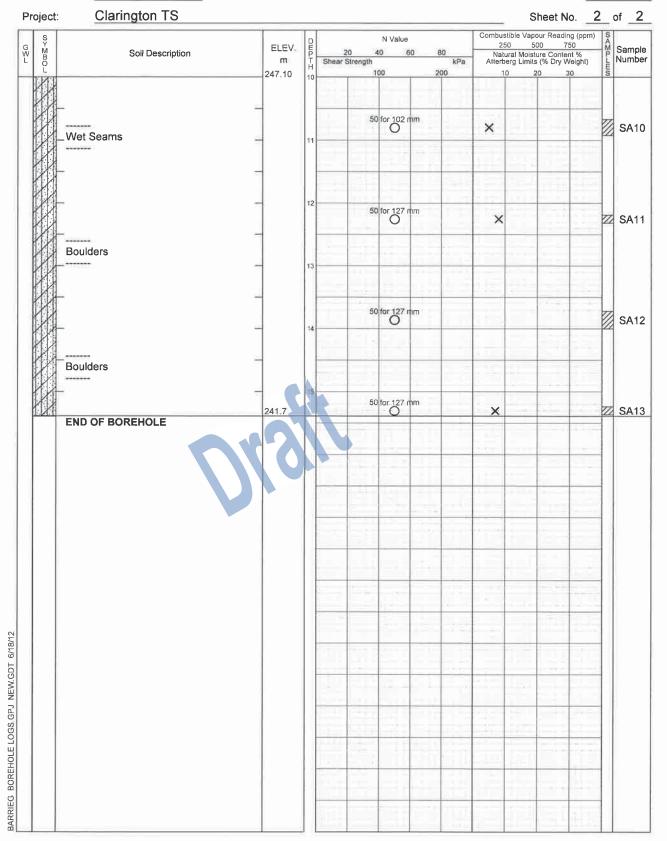
Borehole data requires interpretation assistance from

Water Level (m) 14,8 Depth to Cave (m) 15,2 Time Upon Completion

Projec	ct No.	BAR-00025036-A0	0								No.	1	6
Projec	ct:	Clarington TS								Sheet	No1	_ c	of 2
City/ Munic	cipality:	Municipality of Clarington,	Ontario										
Locati	ion:									_			
Date [Drilled:	May 23, 2012			Auger Sa				Natural I	tible Vapour Re Moisture	ading		
Drill T	ype:	Hollow Stem Augers			SPT (N) Dynamic	Value Cone Te	st	0 12		and Liquid Limit ed Triaxial at		C)
Datum					Shelby T Field Var					at Failure	+ +)	
		· · · · · · · · · · · · · · · · · · ·		-		16 1630		S	1 Grietroi	lieter		•	
SY∑®O G⊗L		Coll Describility	ELEV.	DE		20 4	N Value	50 80	250	ible Vapour Rea 500	ding (ppm) 750	SAZE-INS	Sample
G♥L G♥L		Soil Description	m 257,10	DEP-H		Strength		kPa 200	Atterbe 10	ral Moisture Con rg Limits (% Dry 20	Weight) 30	LES	Numbe
555	TOP	SOIL: Sandy Silt, Dark Brown,		0	õ					*		Ø	SA1
Ĩ	SAN	DY SILT TILL: Trace to Some	256.7							×		Ø	
K	Grav Mois	el, Brown to Grey, Moist to Very t				33							
	[Den	se to Very Dense]	T	Č.		33 O			×			0	SA2
K	1		-				47		-				
			_	2			47 O		×			Ø	SA3
₹H	1		254,80	o									
	Silt L	ayers	-			đ	\$		×			Ø	SA4
X		•	-	3		_						9	
	Silt S	- Seams		5				81 for 279 mm	×	1.00		0	SA5
N	1							121 22	1			1	
K			4	4			_						
1	Boul	ders											
						50	for 127 I	nm	×				SA6
12			-	5	_					tiva S.			
K	Cobt	- bles and Boulders											
				Ы	11								
K			-	6		50	for-102 i	nm					
			_		1		0						SA7
X						-				1.000			
K	1	2	-	7							-		
U	Boul	ders -				50	for <u>7</u> 6 n	m					
K							0		×			ZZ	SA8
	1		-	8									
H	-Cobb	- bles and Boulders	<u></u>				-		- +				
K													
H				9		50	for 127 i	hm	×	- 8	12	Z	SA9
K	朴		-								1		
KV					E			in an					

*exp

exp. Services Inc.Borehole data requires
interpretation assistance fr
561 Bryne Drive, Unit D
Exp before use by others.Barrie, ON L4N 9Y35222t: +1.705.734.6222See Figures 1A and 1B for
Notes on Sample Description See Figures 1A and 1B for Notes on Sample Descriptions.


Borehole data requires interpretation assistance from

Depth to Cave (m) Water Time Level (m) Upon Completion 2.3 2.3

Log of Borehole BH12A

Project No. BAR-000250	36-A	0
------------------------	------	---

16 Figure No.

exp. Services Inc. 561 Bryne Drive, Unit D Exp before use by others. Barrie, ON L4N 9Y3 t: +1.705.734.6222 See Figures 1A and 1B for f: +1.705.734.6224

Borehole data requires interpretation assistance from

Depth to Cave Water Time Level (m) (m) Upon Completion 2.3 2.3

See Figures 1A and 1B for Notes on Sample Descriptions.

Log of Borehole BH12R

Project No.	BAR-00025036-A0	8									gure N	0.	1	17
Project:	Clarington TS											<u> </u>		of 2
City/ Municipality	THE STORE WILL REPORT IN 121	Ontario										3		
Location:														
Date Drilled	May 31, 2012		-	Auger S	ample		\boxtimes			stible Vap Moisture		ding		
Drill Type:	Hollow Stem Augers			SPT (N) Dynamic	Value : Cone Te	st			Plastic	and Liqui	d Limit	\vdash		
Datum:			-	Shelby T	ube				% Stra	ned Triaxi in at Failu		e	Ð	
Datum.			2	Field Va	ne Test		S		Penetro	ometer				
C Y		ELEV.	P			N Value		1		stible Vapo 50 50			S A M P	Comple
G W U U U	Soil Description	m	DWPTH		Strength	0 6	kP	a	Atterb	ural Moistu erg Limits	(% Dry W	eight)	PLES	Sample Number
TO	PSOIL: Sandy Silt, Rootlets, Dark	239.50	0	5	1	00	200		1	0 2	0 3	0	S	
in the second	wn, Moist	239.0		ő		-)	1	SA1
	ose] L: Sandy Silt, Topsoil Inclusions,					-						-		
Bro	wn, Moist to Very Moist	-	1	ð	1.72						×		0	SA2
	ose] TY CLAY: Occasional Gravel,	238.0		101		-		-						
Sil	y Sand Seams, Brown, Moist			15 O		1				×			Ø	SA3
	ry Stiff]	237.3	2	÷									8	
So So	AYEY SILT TILL: Some Sand, me Gravel, Brown to Grey, Damp to	-			26 O					x		-		SA4
Mo					-								1	-
[Ha	ird]				36 O				u F			- 15		
	2		K		0			-		×		1	0	SA5
													Π	
			4											
V		234.8	,			6	8	+	_	×		ELL.		SA6
SA	NDY SILT TILL: Some Gravel, ay, Moist	204.0	2	-			the set			^		1.13	Ĩ	0,10
	21 21		2			24 -								
	ry Dense] 	-						+						
Bo	ulders		6									11.71		
			ľ		50	O 127 m	nm		×				Ø	SA7
Bo	 ulders	-		TRA I				+		×			-12	
			7	111								E F		
SIL	T: Trace Fine Sand, Silty Clay	232.3												
Se	ams, Grey, Saturated	-			195	1022		1						
[Ve	ry Dense]	_	8				ð		19	×		12	0	SA8
					ta juga	1.1					14			
E E		230,8			17.71									
SIL Se [Ve - SA Gruent	ND: Fine to Medium Grained, by, Wet	_	9	1	-		-41.20				ei -	1 11		
ICc	mpact]			Ö		7				×		1		SA9
-	2	-				1								
			10				/					11.		

exp. Services Inc.Borehole data requires
interpretation assistance fr
Exp before use by others.561 Bryne Drive, UnitDBarrie, ON L4N 9Y3Exp before use by others.t: +1.705.734.6222See Figures 1A and 1B for
Notes on Sample Description

Borehole data requires interpretation assistance from

Depth to Cave (m) 5,18 Water Level (m) 4.6 Time Upon Completion

See Figures 1A and 1B for Notes on Sample Descriptions.

Log of Borehole BH12B

Project No.	BAR-00025036-A0	

Figure No. 17

Project	Clarington TS			 					S	heet No.	2	of _2
SY⊻BOL G∛L	Soil Description	ELEV. m 229.50	DWPTH	Strength	N Value 0 (60	80 kPa 200	2: Nat Atterb	50 50	re Content % (% Dry Weight)	_ <u>₿</u>	Sample Number
	SAND AND SILT: Grey, Wet	229.3	10					44				
	[Very Dense]	_	11	50	for 127	mm			×			SA10
		-										
			12		51 O		1		×			SA11
		226.2	13								-	
	SANDY SILT TILL: Some Gravel, Grey, Very Moist [Very Dense]	-	14	50	for 102	mm			×			SA12
			14									
		224.1	15	50	for 127	mm		,	×			SA13
	END OF BOREHOLE	2										
							1		- 		1111	
				- 4					- 4			
									T viti			
							11111				ā 1	

exp. Services Inc.Borehole data requires
interpretation assistance fr561 Bryne Drive, UnitD Exp before use by others.Barrie, ON L4N 9Y3See Figures 1A and 1B fort: +1.705.734.6224See Figures 1A and 1B forf: +1.705.734.6224Notes on Sample Description See Figures 1A and 1B for Notes on Sample Descriptions.

Borehole data requires interpretation assistance from

Water Level (m) 4.6 Depth to Cave (m) Time Upon Completion 5.18

REFERENCE No.:											EN	CLOS	URE	No.:			1	
				BOREHOLE No	.: _		BH1·	-12		B	OF	REF	10	LE	R	EP	O	RT
ìÞ	JSP	EC•	SOL	ELEVATION: _								Page						
CLIENT:		Hyd	ro One Networks Inc.							<u>LE</u>	GEI	ND						
PROJECT	:	Geo	technical Investigatio	n - Clarington Transfo	rme	er Statio	n			\boxtimes	ss	- 5	SPLIT	T SP	001	1		
LOCATIO	N:	Tow	nline Road North and	d Concession Road #7	, Cl	aringtor	, Onta	ario						.BY 1 ER P				
DESCRIB	ED BY:	R. K	habbaznia	CHECKED BY:		F. Bag	heri				/.0			ER L				
DATE (ST	ART):	Nov	ember 12, 2012	DATE (FINISH)	: _	Novem	ber 1	3, 201	2									
	uo	phy				nd er	ery	re nt	Blows per	ion CR	Sł Se	near te ensitivi	tv (S)	-		ΔF		
Depth	Elevation (m)	Stratigraphy		PTION OF BEDROCK	State	Type and Number	Recovery	ontel	Blows per 6 in. / 15 cm or RQD	ex/S		Wat Atte	er cor rberg	ntent limits	(%) (%)			
	Ē	Stra				ŗ≥ź	Re	ŠΟ	or RQD	Per	(b	"N" \ lows /	/alue					
Feet Metres				SURFACE			%			N	1(203	0 40	50 60) 70	80 9	0	
0.12			_ TOPSOIL : 120 mm FILL :	1	1	SS-1	92	34	1-1-2-3	3	•		0	++		+	_	
2			SILT and CLAY, tra	ce gravel, trace brown, moist to very	\square		02				\square		_	$\downarrow \downarrow$		\square		
3 - 10		XX	\moist, soft NATIVE :	/	$\overline{\Lambda}$						\vdash		+	++		+	_	
3 <u>-</u> 1.0 4 <u>-</u>			SANDY CLAYEY S		Ň	SS-2	92	12	4-6-11-14	17				\square		\square		
5 - 1.52			- oxidized seams, gre	trace to some gravel, eyish brown, moist to	Ē								\rightarrow	\downarrow				
6 -				Y TILL, trace gravel,	X	SS-3	100	9	16-33-36-37	69	$\vdash \phi$		-	+	\checkmark	+	_	
7 - 2.0			grey, moist, hard		\square									\square		A		
8 - 2.29			Cobble fragments		\mathbb{N}	SS-4	82	6	31-34-50/	100	0					+	Y	
9 —					\vdash				125mm				_	+	_ 	2.9		Ţ
					×	SS-5	67	5	50/	100	0			+11/		012		
		12							75mm		\square		-	++		+	-	
													-	$\downarrow \downarrow$		\square		
													_	+		\square		
					×	SS-6	67	6	50/ 75mm	100							_•	
		11									\vdash		-	+		+	_	
													_	\square		\square		
20 - 6.0								_					_	++		+	-	
						SS-7	100	5	50/ 125mm	100							_	
		12											-	++		+	_	
														\square		\square		
						1							_	++		+		
					X	SS-8	80	8	40-45-50/ 75mm	100	┢		\pm	\ddagger			-	
											\vdash		+	++	_	+	-	
28 -											\square			$\downarrow \downarrow$		\square		
29 – 9 – 9.0											H							
						SS-9	91	11	30-50/	100			-	+		\square		
					\square	50-5			0000	100	H	-					⊥	

- LOG WITH GRAPH+WELL T040774A1.GPJ INSPEC SOI

BOREHOLE No.:E	3H1-12	BC	
INSPEC+SOL ELEVATION:			DREHOLE REPORT
			Page: <u>2</u> of <u>2</u>
CLIENT: Hydro One Networks Inc.		LEG	END
PROJECT: Geotechnical Investigation - Clarington Transformer Station	<u> </u>	⊠ s	SS - SPLIT SPOON
LOCATION: Townline Road North and Concession Road #7, Clarington,	Ontario	⊠ s	
DESCRIBED BY: R. Khabbaznia CHECKED BY: F. Bagh	neri	∏ A ▼	U - AUGER PROBE - WATER LEVEL
DATE (START): November 12, 2012 DATE (FINISH): Novemb	ber 13, 2012	-	
Depth Depth Number Numb	Recovery Blows Content Content Da no Content Content	Penetraio	Shear test (Cu) Sensitivity (S) ○ Water content (%) ↓ Atterberg limits (%) ● "N" Value (blows / 12 in30 cm)
Feet Metres GROUND SURFACE	%		10 20 30 40 50 60 70 80 90
32	100mr 100 8 33-44-5 125mr	50/ 100 -	

REFEREN	CE No.:	T040774a1								ENCLOSURE No.: 2
/	BOREHOLE No.: BH2-12									BOREHOLE REPORT
iN	ISPEC	•SOL	ELEVATION:							Page: <u>1</u> of <u>2</u>
CLIENT:	Hy	dro One Networks Inc							LE	EGEND
PROJECT:	Ge	otechnical Investigation	on - Clarington Transfo	me	r Statior	า			\boxtimes	SS - SPLIT SPOON
LOCATION	N:	wnline Road North an	d Concession Road #7	, Cla	arington	, Onta	ario			ST - SHELBY TUBE
DESCRIBE	ED BY: <u>R.</u>	Khabbaznia	CHECKED BY:		F. Bag	neri			Ţ	
DATE (STA	ART): <u>No</u>	vember 14, 2012	DATE (FINISH)	: _	Novem	ber 1	4, 201	2		
Depth	Elevation (m) Stratigraphy	DESCR SOIL ANI	IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index/SCR	Shear test (Cu) \triangle Field Sensitivity (S) \Box Lab \bigcirc Water content (%) W_{μ} Atterberg limits (%) \bullet "N" Value 0.90 m – (blows / 12 in30 cm)
Feet Metres			O SURFACE			%			N	
$ \begin{array}{c} $			e clay, trace gravel, , dark brown to brown,		SS-1	58		1-2-3-6	5	WL0.2→ 11/19/2012 0.3 m
$ \begin{array}{c} 3 \\ - \\ 4 \\ 5 \\ - \\ 5 \end{array} $		NATIVE : SANDY CLAYEY S some gravel, sand fragments, brown,	SILT TILL, trace to pockets, cobble moist, hard		SS-2	60		7-13-22-50/ 50mm	35	
6 —		Sa : 42%, Gr : 5%,	Si : 39%, Cl : 14%	X	SS-3	80		23-36-50/ 75mm	100	
8 – 2.29 8 – 9 – 1 9 – 1		Cobble fragments		X	SS-4	67		48-50/ 75mm	100	
$\begin{array}{c} 10 & -\frac{3}{2} & 0 \\ 10 & -\frac{3}{2} & 3.05 \\ 11 & -\frac{5}{2} \\ 12 & -\frac{5}{2} \end{array}$		CLAYEY SILT TILL and gravel, grey, m	., trace to some sand noist, hard	X	SS-5	60		49-50/ 100mm	100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				X	SS-6	60		50/ 125mm	100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Some sand, cobble	e fragments	X	SS-7	82		42-44-50/ 125mm	100	Bentonite Seal
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SANDY CLAYEY S gravel, cobble frag moist Sa : 41%, Gr : 5%,			SS-8	96		12-24-32-50/ 125mm	56	
29 –	A ANY ANY ANY ANY ANY ANY ANY ANY ANY AN			X				22-27-27-35		

ISPEC SOLGDT 0 OG WITH

REFEREN	ICE No.:	T040774a1						r		ENCLO	DSURE	No.:	2	2
			BOREHOLE No	.: _		BH2	-12		B	ORE	HO	LE F	REP	ORT
iN	ISPEC	SOL	ELEVATION: _							Pa	ige: _2	<u>2</u> of	_2_	
CLIENT:	Hyd	dro One Networks Ind	c.					·	LEC	GEND				
PROJECT	: Ge	otechnical Investigati	on - Clarington Transfo	rme	er Statio	٦			\boxtimes	SS	- SPLI	T SPOC	ON	
LOCATION	N:	wnline Road North ar	nd Concession Road #7	, Cl	aringtor	, Ont	ario					.BY TU ER PRO		
DESCRIBE	ED BY: <u>R. I</u>	Khabbaznia	CHECKED BY		F. Bag	heri						ER LEV		
DATE (ST	ART): <u>Nov</u>	vember 14, 2012	DATE (FINISH): _	Novem	ber 1	4, 201	2						
Depth	Elevation (m) Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index/SCR	Shear Sensit O W W _p W ₁ A • "N (blows	test (Cu tivity (S) /ater cou tterberg V" Value S / 12 in.	ntent (% limits (%	∆ Fie □ La) 6)	
Feet Metres		GROUN	D SURFACE		SS-9	% 92			N 54	10 20	30 40	50 60 7	0 80 90	
32 —				X	55-9	92			54					
3310.0														
34 —														
35 —								00 40 50/	100					— -
3611.0				Δ	SS-10	88		23-40-50/ 125mm	100					
37													Sand-	
38												1	1.6 m=	
39														
40				\mathbf{N}	SS-11	100		26-36-50/	100					
41 + 42 + 42 + 42				\vdash				125mm						48
43 -13.0													-/-	
44														
45					7							s	creen-	
46				X	SS-12	100		14-25-26-30	51			$\checkmark -$		
47				\square										
48 -														
49														
50 -												1	5.2 m-	
				X	SS-13	100		16-24-34-47	58			<u> </u>	ave In-	
52 – 15.85 16.0												1	5.9 m=	
		END OF BOREHO												
		NOTE : End of Borehole a									_			_
55		Water level at 14.8 completion												
		19, 2012	S m bgs on November											_
		depth	nstalled at 15.21 m											_
50 <u>-</u> 59 - 18.0		bgs denotes below Sa, Gr, Si and Cl o	lenote Sand, Gravel,											
		Silt and Clay respe	ectively							- -				_
														-
		•												•

	REFERENCE No.:									<u> </u>		ENCLOSURE No.: 3
	/				BOREHOLE No	.: _		BH3	-12		B	OREHOLE REPORT
	ìN	ISP	EC•	SOL	ELEVATION: _							Page: <u>1</u> of <u>2</u>
CI	LIENT:		Hyd	ro One Networks Inc	2.						LE	GEND
PI	ROJECT	:	Geo	technical Investigation	on - Clarington Transfo	orme	er Statio	n				SS - SPLIT SPOON
LC	OCATION	N:	Tow	nline Road North an	d Concession Road #7	, Cl	aringtor	, Onta	ario			ST - SHELBY TUBE AU - AUGER PROBE
DI	ESCRIBE	ED BY:	R. K	habbaznia	CHECKED BY		F. Bag	heri				- WATER LEVEL
D	ATE (ST/	ART):	Nov	ember 6, 2012	DATE (FINISH): _	Novem	ber 7	, 2012	2		
	Depth	Elevation (m)	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index/SCR	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
	Metres		~		D SURFACE			%			N	10 20 30 40 50 60 70 80 90
1 -	0.12 0.76				n AY, trace gravel, trace s, brown, moist to very		SS-1	100	28	1-2-2-2	4	
3 - 4 - 5 -	+ 			NATIVE : SANDY CLAYEY S	SILT TILL, some ams, greyish brown,	Í	SS-2	75	8	3-9-14-15	23	
6 -				Cobble fragments,	grey, hard	X	SS-3	92	8	16-14-18-22	32	
8 - 9 -							SS-4	75	7	20-17-27-28	44	
10 - 11 - 12 -						X	SS-5	82	9	20-36-50/ 125mm	100	
13 - 14 - 15 - 16 - 17 - 18 -	4.0 4.57 5.0			Some sand and gr	avel, very moist		SS-6	67	10	50/ 150mm	100	
19 - 20 - 21 - 22 -				Trace sand, cobble	e fragments		SS-7	57	6	48-50/ 25mm	100	→ WL6.5 / ▼ 11/7/2012
23 - 24 - 25 - 26 - 27 - 28 - 28 - 29 - 30 - 30 -							SS-8 SS-9	100	7	28-30-45-50 28-50/	75	

REFEREN	CE No.	:	T040774a1								ENCLOSURE No.: 3
/				BOREHOLE No	.: _		BH3-	12		B	OREHOLE REPORT
iN	ISP	EC•	SOL	ELEVATION: _							Page: <u>2</u> of <u>2</u>
CLIENT:		Hydr	ro One Networks Inc	2.					I	LEC	GEND
				on - Clarington Transfo							SS - SPLIT SPOON
				d Concession Road #7							ST - SHELBY TUBE
				CHECKED BY:							AU - AUGER PROBE - WATER LEVEL
				DATE (FINISH						Ŧ	
				27112 (1							
		~			Т	-	_			⊆ rr	Shear test (Cu) △ Field
Depth	Elevation (m)	Stratigraphy	DESCR	IPTION OF	State	Type and Number	Recovery	tent	Blows per 6 in. / 15 cm or RQD	/SCI	Sensitivity (S) O Water content (%)
Del	Eleva (n	tratig		D BEDROCK	Sto	Num	secc	Vois Con	15 cm	enet	→ Atterberg limits (%) • "N" Value
-		ίΩ.			_				OFICED		
Feet Metres			GROUN	D SURFACE	+		%		150mm	N	
32 —											
3310.0											
34 —											
35 —											
3611.0					X	SS-10	100	7	14-24-20-35	44	
37 —					\vdash	N N					
38 —											
3912.0											
40											
41					X	SS-11	87	8	27-45-45-50/ 125mm	100	
42 - 12.96			Possible boulder						125000		
43 - 13.0			END OF BOREHO								
44 —											
45 —			NOTE : End of Borehole at	12.96 m bgs due to							
46 -14.0			auger refusal Water level at 6.50) m bgs upon							
47 —			completion bgs denotes below								
48 —			-9	g							
49											
50 —											
51 —											
52 -											
53 - 16.0											
54 —											
55 —											
5617.0											
57 —											
58 —											
59											
60 —											
62 —											

REFEREN	ICE No.:		T040774a1								ENCL	OSUF).: _		4	
				BOREHOLE No.	:_		BH4-	12		B	OR	EHO	DLE	ΞF	REI	90	RT
ih	JSPI	EC•	SOL	ELEVATION:							F	Page:	1	of	_2	_	
CLIENT:		Hydr	o One Networks Inc.							LEC	GENI	D					
PROJECT	:	Geot	echnical Investigation	on - Clarington Transfor	me	r Statio	1			\boxtimes		- SPI	LIT S	POC	N		
LOCATIO	N:	Tow	nline Road North and	d Concession Road #7,	Cla	arington	, Onta	ario			ST AU	- SH - AU					
DESCRIB	ED BY:	R. K	habbaznia	CHECKED BY:		F. Bag	neri				/10	- WA					
DATE (ST	ART):	Nove	ember 5, 2012	DATE (FINISH)	:	Novem	ber 5	, 2012	2								
Depth	Elevation (m)	Stratigraphy	DESCRI SOIL AND	PTION OF DEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index/SCR	Sen:	ar test (sitivity (Water o Atterbe "N" Valu ws / 12	S) conter rg lim	nt (%) its (%	_	Field Lab	Ē
Feet Metres			GROUNE	D SURFACE			%			N	1	20 30 4			0 80	90	
0.10 1 2			TOPSOIL : 100 mm FILL : SILT and CLAY, tra topsoil and rootlets	/		SS-1	100	9	1-2-2-4	4	•	E	Bento		Grou).6 n	$\top \ell$	
3 <u>-</u> 0.76 3 <u>-</u> 1.0 4 <u>-</u>				SILT TILL, trace gravel, prown, moist, very stiff	X	SS-2	92	9	6-8-15-20	23							
5 <u>-</u> 6 <u>-</u> 7 <u>-</u> 2.0						SS-3	100	7	17-28-44-50/ 125mm	72	-0						
8 9			Greyish brown		X	SS-4	91	5	35-50/ 125mm	100	0						
					X	SS-5	50	5	50/ 150mm	100	0						
12 - 3.66 			Cobble/boulder (inf Auger grinding at 3	erred) .66 m bgs													
15 <u>+</u> 4.57 16 <u>+</u> 5.0			 Grey		X	SS-6	80	5	48-50/ 75mm	100	0						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Auger grinding at 6	.1 m bgs	X	SS-7	78	6	35-45-50/ 150mm	100	0		Bent	onite	e Sea		
23 - 7.0 															\downarrow		
26 8.0 8.0 27 					X	SS-8	100	5	20-30-45-50/ 150mm	75	0						
0] 30 					X				20-32-42-48		0						

REFEREN	ICE No.:		T040774a1								ENCLOSURE No.: 4
				BOREHOLE No	.: _		BH4	-12		B	OREHOLE REPORT
ìb	JSPE	C•	SOL	ELEVATION: _							Page: <u>2</u> of <u>2</u>
CLIENT:		Hydro	o One Networks Inc							LE	GEND
PROJECT	:	Geot	echnical Investigation	on - Clarington Transfo	rme	er Static	n			\boxtimes	SS - SPLIT SPOON
LOCATIO	N:	Towr	nline Road North an	d Concession Road #7	, Cl	aringto	n, Ont	ario			ST - SHELBY TUBE
DESCRIB	ED BY:	R. Kł	nabbaznia	CHECKED BY:		F. Bag	heri				AU - AUGER PROBE - WATER LEVEL
DATE (ST	ART):	Nove	ember 5, 2012	DATE (FINISH)	: _	Nover	nber 5	i, 2012	2		
Depth	Elevation (m)	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index/SCR	Shear test (Cu) \triangle Field Sensitivity (S) \Box Lab O Water content (%) $\bigvee_{P_p} W_i$ Atterberg limits (%) • "N" Value (blows / 12 in30 cm)
Feet Metres			GROUN	D SURFACE			%			N	10 20 30 40 50 60 70 80 90
32 —					X	SS-9	100	6		74	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Auger grinding at 1	3.72 m bgs		SS-10 SS-11 SS-12	83		14-25-30-50/ 125mm 22-50/ 150mm 24-41-50/ 125mm	100	
675			Cobble fragments		X	SS-13	80	8	21-50/	100	0 15.5 m-
			END OF BOREHO	<u>LE</u>					100mm		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Borehole dry on No	l dry upon completion ovember 19, 2012 talled at 15.49 m bgs							

_	REFERE	NCE No.	:	T040774a1								ENCLOSURE No.: 5
					BOREHOLE No.	: _		BH5	-12		B	OREHOLE REPORT
	Ì	NSP	EC•	SOL	ELEVATION:						_	Page: <u>1</u> of <u>2</u>
	CLIENT:		Hyd	ro One Networks Inc	<i>.</i>						<u>LE</u>	GEND
	PROJEC [®]	T:	Geo	technical Investigation	on - Clarington Transfor	me	r Statio	n			\boxtimes	SS - SPLIT SPOON
	LOCATIC	N:	Tow	nline Road North an	d Concession Road #7,	Cl	arington	, Onta	ario			ST - SHELBY TUBE AU - AUGER PROBE
	DESCRIE	BED BY:	R. K	habbaznia	CHECKED BY:		F. Bag	heri				- WATER LEVEL
	DATE (ST	TART):	Nov	ember 15, 2012	DATE (FINISH)	: _	Novem	ber 1	5, 201	2		
F												
	Depth	Elevation (m)	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index/SCR	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
	Feet Metres	-			D SURFACE			%			N	10 20 30 40 50 60 70 80 90
	2 <u>-</u> 0.12 1 <u>-</u> 2 <u>-</u> - 0.76			and rootlets, brown	e gravel, trace topsoil		SS-1	92	28	1-1-3-14	4	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			NATIVE : SANDY CLAYEY S gravel, cobble frag hard	SILT TILL, some ments, brown, moist,		SS-2	92	8	8-17-26-25	44	
	6 – 6 – 7 – 2.0					X	SS-3	100	8	11-23-20-21	43	
	8 - 9 - + 2 0						SS-4	100	8	18-20-22-21	42	
	10 3.0 11 12					X	SS-5	89	6	20-38-50/ 150mm	100	
	13 4.0 14						SS-6	80	6	20-50/	100	
	16			Auger grinding			00-0	00		125mm	100	
C_SOL.GDT 12/19	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Auger grinding		X	SS-7	67	6	49-33-30-35	63	
T040774A1.GPJ INS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						SS-8	83	G	31-29-30-32	50	
WITH GRAPH+WELI	26 8.0 27 28 29 29 9.0					Δ	00-0	03	6	1 3 1 - 2 3 - 3 U - 3 2	59	
SOIL LOG	30					X				12-22-21-23		

INSPEC SOLIGDT GP.J Ē WFLI LOG WITH GRAPH

BOREHOLE No.: BH5-12 ELEVATION: BOREHOLE REPORT CUENT: Hydro One Networks Inc. Page: 2_ of _2_ CUENT: Gestechnical messingation - Clarington Transformer Station SS - SPLIT SPOOM DESCRIBED BY: R.Khabbaznia CHECKED BY: F. Bagheri DATE (START): November 15, 2012 DATE (FINISH): November 15, 2012 Test Main State Control of Markan and Concession Road #AC Lainington, Ontario SS - SPLIT SPOOM Test Main State Control of Markan and Concession Road #AC Lainington, Ontario SS - SPLIT SPOOM DATE (START): November 15, 2012 DATE (FINISH): November 15, 2012 Test Main State Control of State Control of State Control of State Control of Contro of Control of Control of Control of Control of Control	REFEREN	ICE No.	:	T040774a1								ENCLOSURE No.: 5
INSPEC-SOL ELEVATION: Page: 2 of 2 CUENT: Hydro One Networks Inc. High of the detection of a finington Transformer Station High of the detection of a finington Transformer Station High of the detection of a finington Transformer Station LOCATION:	1				BOREHOLE No	.: _		BH5	-12		B	OREHOLE REPORT
PROJECT: Geotechnical Investigation - Clarington Transformer Station LOCATION: Townline Road North and Concession Road et #7, Clarington, Ontario DESCRIBED BY: R. Khabbacnia CHECKED BY: F. Bagheri DATE (START): Normber 15, 2012 DATE (FINISH): Norember 15, 2012 Team Matter (START): Normber 15, 2012 DATE (FINISH): Normber 15, 2012 Team DESCRIPTION OF By B	ìN	ISP	EC•	SOL	ELEVATION:							
PROJECT:	CLIENT:		Hydr	ro One Networks Inc						I	LEC	GEND
LOCATION: Townine Road North and Concession Road 47, Clarington, Ontario Image: SHELBY TUBE DESCRIBED BY: R. Khabbaznia CHECKED BY: F. Bagheri	PROJECT	:	Geot	technical Investigation	on - Clarington Transfo	me	er Statior	۱				
DESCRIBED BY: R.Khabbaznia CHECKED BY: F. Bagheri T Auger Prodection DATE (START): November 15, 2012 DATE (FINISH): November 15, 2012 November 12, 2012 November 12, 2012 <td>LOCATION</td> <td>N:</td> <td>Tow</td> <td>nline Road North an</td> <td>d Concession Road #7</td> <td>, CI</td> <td>arington</td> <td>, Onta</td> <td>ario</td> <td></td> <td></td> <td>ST - SHELBY TUBE</td>	LOCATION	N:	Tow	nline Road North an	d Concession Road #7	, CI	arington	, Onta	ario			ST - SHELBY TUBE
DATE (START): November 15, 2012 DATE (FINISH): November 15, 2012 Image: Start Star												
Feet Metres GROUND SURFACE % N 10 20 30 40 50 60 70 80 90 32												
Feet Metres GROUND SURFACE % N 10 20 30 40 50 60 70 80 90 32		, .		· · · · · ·	· · · · · · · · · · · · · · · · · · ·							
32 33 7 43 33 -10.0 34 - 43 34 - 35 - 43 35 - - - - - 36 - 11.0 - - - 37 - - - - - - 38 - - - - - - - 39 - 12.0 - - - - - - 41 -<	Depth	Elevation (m)	Stratigraphy			State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index/SCR	Shear test (Cu) △ Field Sensitivity (S) □ Lab ○ Water content (%) W_p, W_1 Atterberg limits (%) • "N" Value (blows / 12 in30 cm)
32 - 33 - 10.0 34 -	Feet Metres			GROUN	D SURFACE							10 20 30 40 50 60 70 80 90
34 35 36 11.0 58 8 10-17-40-48 57 38 39 12.0 38 39 12.0 100 57 40 41 42 13.0 35 10 20-50/ 100 100 44 44 44 44 15.0 56 11.0 55 80 10 26-50/ 100 100 51 15.4 56 115.0 56 115.0 56 116.0 NOTE : End of Borehole at 15.49 m bgs 55-12 80 10 26-60/ 100	32 —					Д	55-9	33	1		43	
35	3310.0											
36 11.0 37 37 10 58 8 10-17-40-48 57 39 12.0 37 10 20-50/ 100 40 41 41 42 13.0 100 0 41 42 13.0 10 20-50/ 100 0 44 44 14.0 100 100 0 100 44 14.0 15.0 50 10 25-50/ 100 100 50 15.1 15.49 58 80 10 25-50/ 100 0 51 15.49 58 58-12 80 10 25-50/ 100 0 52 16.0 56 56 100 25-50/ 100 0 0 54 55 56 16.0 56 100 25-50/ 100 0 0 54 56 16.0 57 58 10 100 0 0 56 56 57 57 57 57 <td>34 —</td> <td></td>	34 —											
37 -	35 —						,					
38 - 12.0 40 - 12.0 41 - 10 42 - 13.0 43 - 13.0 44 - 125mm 45 - 125mm 46 - 14.0 47 - - 48 - - 49 - 15.48 52 - 16.0 54 - 15.48 52 - 16.0 54 - 15.49 55 - 16.0 56 - 17.0 57 - 100 0 56 - 17.0 57 - 100 0 57 - 0 0 57 - 0 0 57 - 0 0 57 - 0 0 58 - 0 0 57 - 0 0 <td>36</td> <td></td> <td>ŊИ</td> <td></td> <td></td> <td>X</td> <td>SS-10</td> <td>58</td> <td>8</td> <td>10-17-40-48</td> <td>57</td> <td></td>	36		ŊИ			X	SS-10	58	8	10-17-40-48	57	
39 -12.0 40 -13.0 41 -13.0 43 -13.0 44 -14.0 45 -14.0 46 -14.0 47 -15.0 50 -15.48 51 -15.48 52 -16.0 53 -16.0 54 -56 56 -17.0 57 -17.0	37 —					\square						
40 - 12.0 40 - 13.0 41 - 42 - 13.0 43 - 13.0 44 - 45 - 46 - 14.0 47 - 48 - 15.0 50 - 51 - 15.49 51 - 15.49 52 - 16.0 53 - 16.0 54 - 17.0 57 - 16.0 57 - 17.0 57 - 17.0 58 - 17.0 58 - 17.0 58 - 17.0 59 - 17.0 50 - 1	38 —											
40 - 41 - 42 - 43 - 13.0 43 - 13.0 44 - 44 - 45 - 46 - 14.0 47 - 48 - 49 - 15.0 50 - 50 - 15.0 51 - 15.0 52 - 16.0 53 - 16.0 54 - 16.0 54 - 16.0 57 17.0 57 18 - 15.48 54 - 16.0 57 17.0 57 18 - 15.48 54 - 16.0 57 17.0 57 18 - 15.48 54 - 16.0 57 17.0 57 18 - 15.48 58 - 12 80 10 25.50/ 100 - 100mm 100	39 - 12 0											
41 42 13.0 13.0 13.0 1125mm 125mm 44 14.0 14.0 14.0 14.0 14.0 45 15.0 50 15.4 50 15.4 51 15.49 16.0 51 16.0 55 56 17.0 57 17.0 57 17.0 17.0 17.0 17.0 17.0			M									
43 -13.0 44 - 45 - 46 -14.0 47 - 48 - 49 -15.0 50 - 51 -15.49 52 - 53 - 54 - 55 - 56 - 57 - 56 - 57 -	41 —					Å	SS-11	73	10		100	
43												
45 46 47 48 49 -15.0 50 51 -15.49 52 -16.0 53 -16.0 54 -56 -17.0 57 -17.0	43 - 13.0											
46 -14.0 47 - 48 - 49 -15.0 50 - 51 -15.49 52 - 53 - 54 - 55 - 56 - 57 -	44 —											
47 - 48 - 49 - 15.0 50 - 51 - 15.49 52 - 16.0 53 - 54 - 55 - 56 - 17.0 57 17.0 57	45 —											
48	46											
49 15.0 50 51 51 15.49 52 16.0 53 16.0 54 10 55 17.0 57 17.0 57 17.0	47 —											
50 -	48 —											
50 - 15.49 51 - 15.49 52 - 16.0 53 - 16.0 54 - 55 - 56 - 57 - 56 - 57 -	49											
51 -15.49 52 - -16.0 - 53 - 54 - 55 - 56 - 57							SS-12	80	10	25-50/	100	
52	5115.49					\uparrow	00 12	00				
53					<u>DLE</u>							
54 55 56 57 57					15.49 m bgs							
55	54			Borehole open and	I dry upon completion							
	£			290 001000 20101	g. cana canaco							
	5617.0											
	57 -											
	58 –											
	59											
	60 -											
	3 61 <u>-</u>											
	62 –											

REFEREN	ICE No.	:	T040774a1								ENCLOSURE No.: 6
				BOREHOLE No	.: _		BH6	-12		B	OREHOLE REPORT
ìN	ISP	EC•	SOL	ELEVATION:						_	Page: <u>1</u> of <u>2</u>
CLIENT:		Hydı	ro One Networks Ind	C.						LE	EGEND
PROJECT	:	Geo	technical Investigati	on - Clarington Transfo	rme	er Station	า			\boxtimes	SS - SPLIT SPOON
LOCATION	N:	Tow	nline Road North ar	nd Concession Road #7	, Cl	arington	, Onta	ario			ST - SHELBY TUBE AU - AUGER PROBE
DESCRIBI	ED BY:	R. K	habbaznia	CHECKED BY:		F. Bagl	neri				- WATER LEVEL
DATE (ST	ART):	Nove	ember 6, 2012	DATE (FINISH)	: _	Novem	ber 6	, 2012	2		
Depth	Elevation (m)	Stratigraphy	DESCR SOIL AN	IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index/SCR	Shear test (Cu) △ Field Sensitivity (S) □ Lab ○ Water content (%) ₩ _ν , Ψ _i Atterberg limits (%) ● "N" Value (blows / 12 in30 cm)
Feet Metres				D SURFACE			%			Ν	10 20 30 40 50 60 70 80 90
2 – 0.08			topsoil and rootlets	e to some gravel, trace s, brown, moist, firm to		SS-1	100		1-2-3-2	5	
3 _ 0.86			_stiff Brown to grey	/		SS-2A		13		11	
4					Å	SS-2B	58	7	1-2-9-17	11	
5 1.52 6 7 2.0				SILT TILL, trace to le fragments, brownish	X	SS-3	100	7	21-36-50/ 125mm	100	
8 — 9 —			groy, natu		X	SS-4	80	6	36-50/ 100mm	100	
10 - 3.0 11 - 3.0					X	SS-5	80	6	48-50/ 100mm	100	
12 - 4.0 $13 - 4.0$ $14 - 4.57$ $15 - 4.57$ $16 - 5.0$ $17 - 5.0$ $17 - 10$ $18 - 10$ $18 - 10$ $19 - 10$			 Grey		X	SS-6	80	8	48-50/ 100mm	100	
			Cobble fragments		X	SS-7	91	6	35-50/ 125mm	100	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Auger grinding at a	7.32 m to 7.62 m bgs	_	- SS-8	100	6	50/ 25mm	100	
					X	SS-9	100	7	21-30-50/	100	

REFERENCE	lo.: <u>T040774a1</u>								ENCLO	DSUF	RE No	.:	6	
	e	BOREHOLE No.	.: _		BH6-	12		B	ORE	EHO	DLE	R	EPC	DRT
ins	PEC+SOL	ELEVATION:									2			
CLIENT:	Hydro One Networks Inc							LEC	GEND					
	Geotechnical Investigation										LIT SF			
	Townline Road North an										ELBY			
											GER I			
	Y: R. Khabbaznia							Ţ		- VVA	TER I	EVE	L	
DATE (START)	November 6, 2012	DATE (FINISH)	:	Novem	ber 6,	, 2012	<u> </u>							
r noi	Adda DE00D		Ð	and	ery	ant ent	Blows per 6 in. / 15 cm or RQD	SCR	Shear Sensi	tivity (S)	(0/)	△ Fiel	
Depth Elevation	DESCR	IPTION OF D BEDROCK	State	Type and Number	Recovery	oisti onte	6 In. / 15 cm	netra lex/S		tterbe	rg limit	s (%)		
ш	St			ĻΖ	Å	ΣO	or RQD	Pe Inc	i" ● wold)		ie in30 (cm)		
Feet Metres	GROUN	D SURFACE			%		405 100 100	N	10 20	30 4	0 50 6	0 70	80 90	•
32 —							125mm							
3310.0														
34 —														
35 —														
36			Å	SS-10	100	6	27-50/ 75mm	100	0					
37 —														
38 —														
39 - 40 0														-
40														
41			Х	SS-11	75	6	28-45-50/ 100mm	100	0				++	
42 —							TOOITIII							
43 - 13.0														
44 —														
45 - 13.72	Some gravel, cobb		+											
46 -14.0	Some gravel, cobb	le magments	X	SS-12	100	5	25-30-50/	100	0					
47			Ĥ				150mm							
48														
√ 49														
														-
[₽] + 51 - 15.55			М	SS-13	83	6	26-50/ 150mm	100	0					
0. 	END OF BOREHO	LE												
^o +16.0	NOTE :													-
	End of Borehole at Borehole open and	15.55 m bgs dry upon completion												-
	bgs denotes below													
⁴ / ₁₀ 56 – 17.0														-
										_				
H														
										_				-
Soll LOG WITH GRAPH+WELL T0407141.GPU 182EC_SOLGDT 1222012 50														
ω 	1 1					1		1						1

REFEREN	ICE No.:	T040774a1								ENC	LOSU	REN	lo.: _		7	
			BOREHOLE No	.: _		BH7	-12		B	OR	EH	OL	EF	REF	YOF	۲۶
ìN	ISPEC	•SOL	ELEVATION:								Page:					
CLIENT:	Hy	ydro One Networks Ind	2.						LE	GEN	D					
PROJECT	:G	eotechnical Investigati	on - Clarington Transfo	rme	r Statio	า			\boxtimes	SS	- SF	PLIT :	SPOC	ON		
LOCATION	N:T	wnline Road North ar	d Concession Road #7	, Cl	arington	, Onta	ario			ST	- SH - AL		YTU			
DESCRIBI	ED BY: <u>R</u>	Khabbaznia	CHECKED BY:		F. Bag	heri				AU			R LEV			
DATE (ST	ART): <u>N</u>	ovember 5, 2012	DATE (FINISH)	: _	Novem	ber 5	, 2012	2								
	د ک				σ.	~	a +	Blows per	БĶ	She	ear test	(Cu)			Field	
Depth	Elevation (m) Stratiaraphy	DESCR	IPTION OF	State	Type and Number	Recovery	sture	Blows per 6 in. / 15 cm or RQD	straic x/SC		Water Atterb	aante	nn+ (0/) () (4)	_ab	
ă	Elev (SOIL AN	D BEDROCK	۵.	Nur	Rec	C Moi	15 cm or RQD	Dene (abr	w _p w _i	"N" Va	ue				
Feet Metres			D SURFACE	+		%			<u>н </u>	(ws / 12 20 30		,		90	
0.10		TOPSOIL : 100 mi		47												
		FILL : SILTY CLAY, trace	e gravel, trace topsoil	X	SS-1	83	23	1-2-2-3	4	•	0	++				
2		and rootlets, brown														
3 1.0		X		N	SS-2	42	28	1-2-1-2	3	•	0	+			$\left \right $	
4		X		\square												
5 1.52	Ĭ	NATIVE :		$\overline{\mathbf{N}}$						\vdash		++			\square	
6 <u>-</u> - 2.0		some gravel, oxidi	SILT TILL, trace to zed seams, brown,	M	SS-3	100	10	4-4-5-6	9		\square					
		very moist, stiff to	hard	E								\square		${\mathbb H}$	\square	
8				X	SS-4	82	12	30-48-50/ 125mm	100	ρ						
9																
		Greyish brown		\mathbb{N}	SS-5	88	5	32-48-50/	100	0						
				μ				125mm								
												+				
13 - 4.0																
											+	++			\square	
15				\mathbb{N}	SS-6	88	6	25-39-50/	100	0						
16 — 5.0 5.0				\vdash				125mm				+			$\left \right $	
															\square	
												++			\square	
20 + 6.0																
		Grey		X	SS-7	73	6	39-50/ 125mm	100	0						
								123000				+			H	
23 - 7.0																
												+		\vdash		
				M	SS-8	100	6	27-30-40-45	70	0		+		\vdash	$\left \right $	
20 <u>-</u> 8.0				\wedge								\square		<u>A</u>		
										\vdash		+			$\left - \right $	
															\square	
29 <u>+</u> 9.0 30 <u>-</u> 9.15										\vdash		+		\vdash	\mathbb{H}	
		Cobble fragments		X	SS-9	36	6	36-50/	100	0						

- LOG WITH GRAPH+WELL T040774A1.GPJ INSPEC_SOL.GD

REFERENCE No.: T040774a1								ENCLOSURE No.: 7
	BOREHOLE No	.: _		BH7·	·12		B	OREHOLE REPORT
INSPEC-SOL	ELEVATION:							Page: <u>2</u> of <u>2</u>
CLIENT: Hydro One Networks In	C.						LEC	GEND
PROJECT: Geotechnical Investigat	on - Clarington Transfo	rmei	r Statio	า			\boxtimes	SS - SPLIT SPOON
LOCATION:Townline Road North an	nd Concession Road #7	, Cla	arington	, Onta	ario			ST - SHELBY TUBE AU - AUGER PROBE
DESCRIBED BY: R. Khabbaznia	CHECKED BY:		F. Bag	neri				- WATER LEVEL
DATE (START):November 5, 2012	DATE (FINISH)	: _	Novem	ber 5	, 2012	2		
	IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index/SCR	Shear test (Cu) △ Field Sensitivity (S) □ Lab ○ Water content (%) ↓ Atterberg limits (%) ● "N" Value (blows / 12 in30 cm)
Feet Metres GROUN	D SURFACE			%		135mm	Ν	10 20 30 40 50 60 70 80 90
						125mm		
33 - 10.0								
34								
35								
36 -11.0		М	SS-10	100	8	25-38-50/ 125mm	100	
37								
38								
39								
40		\square						
		М	SS-11	100	8	28-42-50/ 125mm	100	
42								
44 —								
45		\square						
46 - 14.0		X	SS-12	100	7	23-30-38-49	68	
47		\square						
48								
49								
50		\square						₩L15.2 11/5/2012
5 51		X	SS-13	100	8	22-37-48-50	85	
		+						
	DLE							
54 – NOTE : End of Borehole a	t 15.85 m bas							
So Water level at 15.2	2 m bgs upon							
56 – 17.0 bgs denotes below	r ground surface							
57 —								
59								
62 —								

_	REFEREN	ICE No.	:	T040774a1								ENCLOSURE No.: 8
	/				BOREHOLE No	.: _		BH8	12		B	OREHOLE REPORT
	ìÞ	JSP	EC•	SOL	ELEVATION:							Page: <u>1</u> of <u>2</u>
	CLIENT:		Hyd	ro One Networks Inc							LE	GEND
	PROJECT	:	Geo	technical Investigation	on - Clarington Transfo	me	r Statio	า			\boxtimes	SS - SPLIT SPOON
	LOCATIO	N:	Tow	nline Road North and	d Concession Road #7	, Cla	arington	, Onta	ario			ST - SHELBY TUBE AU - AUGER PROBE
	DESCRIB	ED BY:	R. K	habbaznia	CHECKED BY:		F. Bag	heri				- WATER LEVEL
	DATE (ST	ART):	Nov	ember 15, 2012	DATE (FINISH)	: _	Novem	ber 1	5, 201	2		
	Depth	Elevation (m)	Stratigraphy		PTION OF DEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index/SCR	$ \begin{array}{c c} Shear test (Cu) & \bigtriangleup \ Field \\ Sensitivity (S) & \Box \ Lab \\ \bigcirc \ Water content (\%) \\ \underset{W_p, W_l}{\longleftarrow} Atterberg limits (\%) \\ \bullet \ \ "N" \ Value \\ (blows / 12 \ in30 \ cm) \end{array} $
Fe	eet Metres				O SURFACE			%			N	10 20 30 40 50 60 70 80 90
1	 0.76			¬TOPSOIL : 120 mm FILL : SANDY SILTY CLA topsoil and rootlets n moist, loose	NY, trace gravel, trace , brown, moist to very		SS-1	92	20	1-1-2-2	3	
3 4 5				Some gravel, brown	nish grey	X	SS-2	83	8	10-20-30-27	50	
6 7	- 2.0			grey, moist, very st	ILT TILL, trace gravel,	X	SS-3	83	9	10-12-15-24	27	
8 9 10				Cobble fragments		X	SS-4	92	7	22-34-42-48	76	
11							SS-5	100	7	22-25-20-23	45	
14 15 16 17	5 4.57 4.57 5 5.0 7 5.0			Grey		X	SS-6	73	6	42-50/ 125mm	100	
12 201.GDT 12/20/1	$\begin{array}{c} -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$					X	SS-7	73	10	44-50/ 125mm	100	
SOIL LOG WITH GRAPH+WELL T040774A1.GPJ INSPEC_SOL.GDT 12/20/12 0.6 32 45 55 55 57 15 56 0.6 37 45 55 56 57 56 56 56 56 56 56 56 56 56 56 56 56 56				Auger grinding Sa : 41%, Gr : 5%,	Si : 37%, Cl : 17%		SS-8	100	11	14-46-50/ 125mm	100	
N DOL 100	- 9.0			Auger grinding		X	SS-9	100	10	48-50/ 100mm	100	○ ○ ○ ○ ●

REFEREN	CE No.	:	T040774a1								ENCLOSURE	No.:	8	
				BOREHOLE No	: .		BH8	-12		B	OREHO	_E R	EPC	DRT
ìN	ISP	EC•	SOL	ELEVATION:							Page: 2		-	
CLIENT:		Hydr	ro One Networks Inc	2.					I	LEC	GEND			
PROJECT:		Geot	technical Investigati	on - Clarington Transfo	rme	er Statio	n			\boxtimes		SPOOL	N	
				d Concession Road #7						\square	ST - SHEL	BY TUB	E	
				CHECKED BY:							AU - AUGE - WATE			
				DATE (FINISH)						-				
	, <u>-</u>		·	, , , , , , , , , , , , , , , , , , ,										
Depth	Elevation (m)	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index/SCR	Shear test (Cu Sensitivity (S) Water con W _p W _l Atterberg I • "N" Value (blows / 12 in	tent (%) imits (%)	∆ Field □ Lab	
Feet Metres		1 261 X 14	GROUN	D SURFACE			%			N	10 20 30 40 5	60 60 70	80 90	1
32 —														
3310.0														
34 —														
35 —						SS-10	55	10	30-50/	100				
3611.0									125mm	100				
37 —														
38 —														
39														
40 - 12.20			Auger grinding		×	SS-11	100	10	50/	100	•			•
41 —									150mm					-
42														-
43 —														-
45						SS-12	91	9	44-50/	100	0			
46									125mm					-
														-
														-
²⁴⁹ — 15.0														
					X	SS-13	88	8	22-45-50/	100	0			
52 — 15.67 52 — 15.67		27621:170	END OF BOREHO						125mm					
														-
			NOTE : End of Borehole at											
55 —			Sa, Gr, Si and Cl d	l dry upon completion lenote Sand, Gravel,										-
5617.0			Silt and Clay respendent bgs denotes below											
59														
60														
62 —														

REFEREN	ICE No.:	T040774a1								ENCLOSURE No.: 9
			BOREHOLE No	.: _		BH9-	-12		B	OREHOLE REPORT
ìN	ISPEC+	SOL	ELEVATION:						_	Page: <u>1</u> of <u>2</u>
CLIENT:	Hydr	o One Networks Ind	2.						LE	GEND
PROJECT	: Geot	echnical Investigati	on - Clarington Transfo	rme	r Statio	า			\boxtimes	SS - SPLIT SPOON
LOCATION	N:Towr	nline Road North ar	d Concession Road #7	, Cl	arington	, Onta	ario			ST - SHELBY TUBE AU - AUGER PROBE
DESCRIBE	ED BY: <u>R. Ki</u>	nabbaznia	CHECKED BY:		F. Bag	heri				- WATER LEVEL
DATE (ST	ART): <u>Nove</u>	ember 9, 2012	DATE (FINISH)	: _	Novem	ber 1	2, 201	2		
Depth	Elevation (m) Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index/SCR	Shear test (Cu) \triangle Field Sensitivity (S) \square Lab \bigcirc Water content (%) $\underset{w_{p}}{{}}$ Atterberg limits (%) \bullet "N" Value (blows / 12 in30 cm)
Feet Metres	1. S		D SURFACE			%			N	10 20 30 40 50 60 70 80 90
1 0.12 1 2 - 0.76		TOPSOIL : 120 mi FILL : SANDY CLAYEY S trace topsoil and ro soft	/		SS-1	83	30	1-1-2-2	3	
3 <u>-</u> 1.0 4 <u>-</u> 5 <u>-</u>		NATIVE : SANDY CLAYEY S	SILT TILL to SANDY trace to some gravel, oxidized seams		SS-2	100	11	2-6-6-11	12	
6 – 7 – 2.0		brownish grey, mo	ist to very moist, stiff	X	SS-3	92	11	4-5-8-7	13	
					SS-4	67	9	4-7-9-9	16	
$ \begin{array}{c} 10 & - & 3 \\ & - & 3 \\ 11 & - & \\ 12 & - & \\ 12 & - & \\ \end{array} $		Hard, grey			SS-5	84	7	10-12-20-50/ 25mm	32	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Auger grinding			SS-6	83	7	20-22-38-42	60	
21				X	SS-7	100	8	12-26-30-28	56	
25 26 8.0 27 28 29 29					SS-8	100	8	12-26-30-28-	56	
				X				23-35-45-41		

REFEREN	ICE No.	:	T040774a1								ENCLO	DSUF	RE N	0.: _		9
	ICD									B						ORT
	126	CU*	SOL	ELEVATION: _							Pa	ige:	_2	of	_2	
CLIENT:		Hydr	o One Networks Inc.							LEC	GEND					
PROJECT	:	Geot	technical Investigatio	n - Clarington Transfo	rme	er Statio	n					- SPI				
LOCATIO	N:	Tow	nline Road North and	Concession Road #7	, Cl	laringtor	n, Onta	ario			ST AU	- SH - AU				
DESCRIBI	ED BY:	R. K	habbaznia	CHECKED BY:		F. Bag	heri			Ţ		- WA	TER	LEV	/EL	
DATE (ST	ART):	Nove	ember 9, 2012	DATE (FINISH): _	Novem	nber 1	2, 201	2							
ح	uo	thy	550051		0	and	ery	arte	Blows per 6 in. / 15 cm or RQD	SCR	Shear Sensi	tivity (S)	-+ (0/	∆F ,□L	
Depth	Elevation (m)	Stratigraphy		PTION OF BEDROCK	State	Type and Number	Recovery	loistu Conte	6 in. / 15 cm	netra dex/S		tterbe	erg lin	nits (%) 6)	
	ш	Str				⊢ŕ~z	Å	≥o	or RQD	Pe Inc	1" • Wold)) cm)		
Feet Metres		নগ্ৰহ	GROUND	SURFACE		SS-9	% 92	8		N 80	10 20	30 4	40 50	60 7	0 80 9	0
32 —					Å		02								\square	
₃₃ 10.0																
34 —														\square		
35 — 10.67			Sand seams			7										
³⁶ – 11.0					X	SS-10	100	6	10-20-25-24	45	•					
37 —					ľ								\square	_		
38 —																_
39 — 12.0													$\left \right $			
40					\mathbb{N}	SS-11	100	7	11-16-22-32	10	0					_
					\wedge	133-11	100		11-10-22-32	40						
43													$\left \right $			_
44		///														
45						7										
46					X	SS-12	100	7	15-22-28-37	50	0		┼┿	_		
47					μ										′L14.5	¥
48 -															2/2012	
₂ 49 <u>−</u> 15.0																
15/19/																
51 – 1 					X	SS-13	100	8	16-23-25-42	58	0			•		
og 52 - 15.85				E	ſ											
53			END OF BOREHOI	<u>_</u>												
			NOTE : End of Borehole at										$\left \right $			
55			Water level at 14.45 completion													
56			bgs denotes below	ground surface									$\left \right $	+		_
57													\square			
Hdva 59																
													$\left \right $	+		
SolLLOG WITH GRAPH+WELL T040774A1.GPJ INSPEC_SOL.GDT 12/19/12 2011 L0 05 55 52 52 52 52 52 52 52 52 52 52 52 52																

REFEREN	ICE No.:	T040774a1								ENCLOSURE No.: 10
			BOREHOLE No	.: _	E	3H10	-12		B	OREHOLE REPORT
ìN	ISPEC	SOL	ELEVATION: _						_	Page: <u>1</u> of <u>2</u>
CLIENT:	Hydi	ro One Networks In	2.						LE	GEND
PROJECT	: Geo	technical Investigati	on - Clarington Transfo	rme	er Station	۱				SS - SPLIT SPOON
LOCATIO	N:Tow	nline Road North ar	d Concession Road #7	, CI	arington	, Onta	ario			ST - SHELBY TUBE AU - AUGER PROBE
DESCRIB	ED BY: <u>R. K</u>	habbaznia	CHECKED BY:		F. Bag	neri				- WATER LEVEL
DATE (ST	ART): <u>Nove</u>	ember 7, 2012	DATE (FINISH)): _	Novem	ber 7	, 2012	2		
Depth	Elevation (m) Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index/SCR	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
Feet Metres			D SURFACE			%			N	10 20 30 40 50 60 70 80 90
1 0.12 1 2 0.76		TOPSOIL : 120 mi FILL : SANDY SILTY CL topsoil and rootlets wet, soft	AY, trace gravel, trace s, brown, very moist to		SS-1	75	48	1-1-2-2	3	● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
3 - 1.0 4 - 1.0 5 - 1.52		Trace sand, very s	<i>J</i>		SS-2	67	20	1-1-1-2	2	
6 2.0 7		CLAY TILL, some	SILT to SANDY SILTY gravel, oxidized gments, brown, moist,		SS-3	75	8	14-18-13-15	31	
		,		X	SS-4	92	11	8-11-13-22	24	
$ \begin{array}{c} 10 & - & 3 \\ & - & 3 \\ 11 & - & \\ 12 & - & \\ 12 & - & \\ \end{array} $		Grey			SS-5	92	9	8-16-17-24	33	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Trace sand, very s		X	SS-6	92	8	13-11-18-18	29	
20 + 6.0 21 + 22 + 2 22 + 2 23 + 7.0				X	SS-7	100	7	10-14-16-18	30	
24 25 26 8.0 27 28 29 29				X	SS-8	67	7	10-12-22-35	34	
30 - 9.0 30 - 9.15 	erra (h. 1997) 1993 - Stational Stational 1994 - Stational Stationae S Stationae Stationae Stati	Cobble fragments		X				11-14-26-45		

REFEREN	ICE No.	:	T040774a1								ENCLOSURE No.: 10
				BOREHOLE No	.: _	E	3H10	-12		B	OREHOLE REPORT
ìN	ISP	EC•	SOL	ELEVATION:							Page: <u>2</u> of <u>2</u>
CLIENT:		Hydr	o One Networks Inc						I	LEC	GEND
PROJECT	:	Geot	technical Investigati	on - Clarington Transfo	rme	er Statio	า				
LOCATION	N:	Towr	nline Road North an	d Concession Road #7	, Cl	arington	, Onta	ario			ST - SHELBY TUBE
				CHECKED BY:							AU - AUGER PROBE - WATER LEVEL
			ember 7, 2012							-	
Depth	Elevation (m)	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index/SCR	Shear test (Cu) △ Field Sensitivity (S) □ Lab ○ Water content (%) $\mathbf{W}_{p}, \mathbf{W}_{l}$ Atterberg limits (%) ● "N" Value (blows / 12 in30 cm)
Feet Metres			GROUN	D SURFACE			%	6		N	10 20 30 40 50 60 70 80 90
32 —					X	SS-9	100	6		40	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						SS-10 SS-11 SS-12 SS-13	100		9-12-13-22 10-14-18-23 16-18-21-33 11-24-27-37	25 32 39	
52 – 15.85 – 16.0											
53 —			END OF BOREHO	<u>DLE</u>							
54 55 5617.0 57 58 59 18.0			NOTE : End of Borehole at Borehole open and bgs denotes below	I dry upon completion							
60 <u>-</u> 61 <u>-</u>											
62 —											

REFEREN	ICE No.:	T040774a1						· · ·		ENCLOSU	RE No	.:		11	
			BOREHOLE No.	:_	E	3H11	-12		B	OREH	OLE	ER	EP	OR [.]	Г
iN	JSPE	C+SOL	ELEVATION:							Page:	_1	of	_2_		
CLIENT:	ŀ	Hydro One Networks Inc							<u>LE</u>	GEND					
PROJECT	:	Geotechnical Investigation	on - Clarington Transfor	me	r Statio	า					LIT SF				
LOCATION	N:	Townline Road North and	d Concession Road #7,	Cla	arington	, Onta	ario				IELBY IGER I				
DESCRIBI	ED BY: <u>F</u>	R. Khabbaznia	CHECKED BY:		F. Bag	heri					ATER I				
DATE (ST	ART): <u>1</u>	November 8, 2012	DATE (FINISH):		Novem	ber 9	, 2012	2							
Depth	Elevation (m)		IPTION OF DEDROCK	State	Type and Number		Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index/SCR	Shear test Sensitivity Water Matterber W _p W ₁ Matterber W _p W ₁ Shear test Matterber W _p W ₁	(S) content erg limit	: (%) s (%) 0.9 cm)	∆ Fi □ La		Į T
Feet Metres			D SURFACE			%			N	10 20 30 4					
1 <u></u> 0.10 1 <u></u> 2 <u></u> 0.76			e gravel, trace topsoil , moist to very moist,		SS-1	100	31	1-1-3-2	4				.9 m_ 2012	<u>]</u>	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		NATIVE : SANDY CLAYEY S	SILT TILL, trace to e fragments, brown,	X	SS-2	58	7	2-4-14-23	18						
$ \begin{array}{c} $				X	SS-3	100	4	28-30-35-50/ 125mm	65	0					
8 — <u>-</u> 9 — 2.74		Grey		X	SS-4	100	6	22-32-41-35	73	0					
10 - 3.0 11 - 3.0 11 - 12 - 13 13 - 4.0		bgs	n 2.74 m to 3.05 m		SS-5	100	7	27-40-37-40	77						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Sand pockets Auger grinding		X	SS-6	100	14	11-23-50/ 150mm	73		Bento	onite	Seal-		
19 + 6.10 20 + 6.10 21 + 6.10 21 + 1 22 + 1		SANDY SILT, som grey, moist to very		×	SS-7	100	7	50/ 150mm	100						
200		Auger grinding		×	SS-8	100	7	50/ 125mm	100	0 0					
29 29 30 9.0 30 9.15 		 SANDY CLAYEY S fragments, grey, m 		×	SS-9	100	11	50/ 100mm	100						

	REFEREN	ICE No.	:	T040774a1						<u> </u>		ENCLOSURE No.: 11
	1				BOREHOLE No.	:	E	3H11	-12		B	OREHOLE REPORT
	iN	ISPI	EC•	SOL	ELEVATION:							Page: <u>2</u> of <u>2</u>
	CLIENT:		Hydı	ro One Networks Inc.							LEC	GEND
	PROJECT	:	Geo	technical Investigatic	on - Clarington Transfor	me	er Statio	1				SS - SPLIT SPOON
	LOCATIO	N:	Tow	nline Road North and	d Concession Road #7,	CI	arington	, Onta	ario			ST - SHELBY TUBE AU - AUGER PROBE
					CHECKED BY:						Ţ	- WATER LEVEL
	DATE (ST	ART):	Nove	ember 8, 2012	DATE (FINISH):	_	Novem	ber 9	, 2012	2		
									1			Shear test (Cu) △ Field
	Depth	Elevation (m)	Stratigraphy	DESCRI	PTION OF	State	Type and Number	Recovery	tent	Blows per 6 in. / 15 cm or RQD	SCR	Sensitivity (S) Water content (%)
	De	Elev: (n	Stratig	SOIL ANE	BEDROCK	Ste	Type	Recc	Mois	15 cm or RQD	Penel	 Atterberg limits (%) "N" Value
Fe	et Metres		0)	GROUNE	SURFACE			%			ш <u>=</u> N	(blows / 12 in30 cm) 10 20 30 40 50 60 70 80 90
32												
33	+ 10.0											
34												
35	10.67			Auger grinding			SS-10	100	11	50/	100	
36				0 0 0						125mm		11.0 m=
37	- <u>L</u>											Sand
38												
39 40												
41						X	SS-11	0	9	35-50/ 125mm	100	
42												
43	13.0											
44	-											Screen
45				SILT and SAND, tra	ace to some gravel, saturated, compact to	\mathbb{N}						
46	-			very dense	saturated, compact to	Ň	SS-12	67	17	3-5-15-18	20	
48	-											
49												14.8 m
50/1				Very dense			SS-13	100	15	40-50/	100	
109 51	15.49			END OF BOREHO	6					100mm		15.5 m –
ວ <u>່</u> 52	-16.0			NOTE :								
DE 53	+			End of Borehole at A 50 mm diameter								
4 54 1.6PJ 52	+			installed at 14.80 m Water level at 3.12	bgs							
0774A	+ 17.0			completion	m above ground level							
57				on November 19, 2 bgs denotes below	012							
■ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
SolL LOG WITH GRAPH+WELL T040774A1. GPJ INSPEC_SOL.GDT 12/20/12 70 10 65 82 25 95 55 75 15 05 05 05 05 05 05 05 05 05 05 05 05 05	18.0											
	- <u>L</u>											
	-1											
ģ 62												

REFEREN	CE No.:T040774a1							ENCLOSURE No.: 12
		BOREHOLE No.:	I	3H12	-12		B	OREHOLE REPORT
iN	SPEC+SOL	ELEVATION:						Page: <u>1</u> of <u>2</u>
CLIENT: _	Hydro One Networks In	C.					<u>LEC</u>	GEND
PROJECT:	Geotechnical Investigati	on - Clarington Transform	er Statio	า				SS - SPLIT SPOON
LOCATION	I:Townline Road North ar	d Concession Road #7, C	laringtor	, Onta	ario			ST - SHELBY TUBE AU - AUGER PROBE
DESCRIBE	D BY: <u>R. Khabbaznia</u>	CHECKED BY:	F. Bag	heri				- WATER LEVEL
DATE (STA	ART): November 7, 2012	DATE (FINISH):	Novem	ber 8,	2012			
Depth	Stratig Stratig	IPTION OF D BEDROCK	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index/SCR	Shear test (Cu) Sensitivity (S) \Box Lab \bigcirc Water content (%) H_{p} Atterberg limits (%) \blacksquare "N" Value (blows / 12 in30 cm)
Feet Metres		D SURFACE		%			Ν	10 20 30 40 50 60 70 80 90
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	FILL : SANDY SILTY CL topsoil/organics ar		SS-1	100	29	2-2-2-3	4	
$\begin{bmatrix} 3 & \\ & \\ & \\ 5 & & 1.52 \end{bmatrix}$	Sand layer, brown	, wet, stiff	SS-2	33	15	2-7-8-4	15	• •
6 – – 2.0 7 – 2.0	CLAY TILL, some	SILT to SANDY SILTY gravel, oxidized ist to very moist, stiff	SS-3	67	12	2-5-6-9	11	
8 - 2.29 8 - 9 - 1 9 - 1	Cobble fragments,	brownish grey, hard	SS-4	100	9	10-33-50/ 125mm	100	
$ \begin{array}{c} 10 & - & 3.0 \\ 11 & - & 3.05 \\ 11 & - & & \\ 12 & - & & \\ \end{array} $	Grey, sand pocket	s, very stiff	SS-5	86	19	10-12-17-23	29	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Hard	>	⊴ SS-6	100	10	50/ 100mm	100	
$ \begin{array}{c} 18 \\ 19 \\ 19 \\ 20 \\ 1 \\ 21 \\ 21 \\ 22 \\ 22 \\ 1 \\ 1 \\ 1 \\ 22 \\ 1 \\ 1 \\ 1 \\ 22 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	Auger grinding	Σ	ss-7	67	10	40-50/ 75mm	100	
$\begin{array}{c} 23 - 7.0 \\ 24 - 1 \\ 25 - 1 \\ 26 - 8.0 \\ 27 - 8.0 \\ 28 - 1 \end{array}$		Z	≤ SS-8	100	9	50/ 100mm	100	
	Sand pockets, cob	ble fragments	SS-9	91	12	20-50/	100	

SOIL LOG WITH GRAPH+WELL T040774A1.GPJ INSPEC_SOL.GDT

REFEREN	ICE No.:		T040774a1								ENCLOSURE No.: 12
				BOREHOLE N	o.: .		BH1	2-12		B	OREHOLE REPORT
í N	JSPE	C•	SOL	ELEVATION:							Page: <u>2</u> of <u>2</u>
CLIENT:		Hydro	o One Networks Inc							<u>LEC</u>	GEND
PROJECT	:	Geote	echnical Investigation	on - Clarington Transf	orme	er Stat	ion				SS - SPLIT SPOON
LOCATION	N:	Town	lline Road North an	d Concession Road #	7, C	laringt	on, Or	ntario			ST - SHELBY TUBE AU - AUGER PROBE
DESCRIBI	ED BY:	R. Kh	nabbaznia	CHECKED BY	′: _	F. Ba	agheri			⊥⊥ · ▼	- WATER LEVEL
DATE (ST	ART):	Nove	mber 7, 2012	DATE (FINISH	H): _	Nove	mber	8, 201	2		
Depth	Elevation (m)	Stratigraphy	SOIL ANI	IPTION OF D BEDROCK	State	Type and			Blows per 6 in. / 15 cm or RQD	Penetraion Index/SCR	Shear test (Cu) △ Field Sensitivity (S) □ Lab ○ Water content (%)
Feet Metres		61.J.F	GROUNI	D SURFACE	_		%	,	125mm	N	10 20 30 40 50 60 70 80 90
$\begin{array}{c} & - \\ 32 & - \\ 33 & - \\ 33 & - \\ 34 & - \\ 35 & - \\ 36 & - \\ 36 & - \\ 37 & - \\ 38 & - \\ 38 & - \end{array}$					×	SS-1	0 10	0 14		100	
$\begin{array}{c} 39 & - \\ - & -12.0 \\ 40 & - \\ 41 & - \\ 42 & - \\ 42 & - \\ 43 & - \\ 44 & - \end{array}$			Stone fragments		×	3 SS-1	1 10	0 10	50/ 125mm	100	
45			Auger grinding		×	SS-1			50/ 125mm 50/	100	→ → → → → → → → → → → → → → → → → → →
51			END OF BOREHO NOTE : End of Borehole at Water level at 15.0 completion bgs denotes below	15.37 m bgs 2 m bgs upon					125mm		

_	REFERE	NCE No).:	T040774a1								ENCLO	SURE	No.:		13	
		~			BOREHOLE No.	:_	I	3H13	-12		B	ORE	HO	LE	RE	EPO	RT
	ì	NSP	EC	SOL	ELEVATION:								e:				
	CLIENT:		Hyd	ro One Networks Inc	<u>.</u>						LE	GEND					
	PROJEC	ст:	Geo	technical Investigati	on - Clarington Transfor	me	er Statio	n			\boxtimes	SS -	SPLI	r spo	NOC		
	LOCATI	ON:	Tow	nline Road North an	d Concession Road #7,	CI	aringtor	, Onta	ario			ST - AU -	SHEL AUGE			-	
	DESCRI	BED BY	R. K	Khabbaznia	CHECKED BY:		F. Bag	heri					WATE				
	DATE (S	TART):	Nov	ember 13, 2012	DATE (FINISH)	_	Novem	ber 1	3, 201	12							
	Depth	Elevation (m)	Stratigraphy	DESCR SOIL ANI	IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index/SCR	Shear t Sensitiv ○ Wa W _p W ₁ Atte	est (Cu vity (S) ater cor erberg Value Value	i) ntent (limits -30 cr	2 [(%) (%) n)	∆ Field] Lab	
	Feet Metre				D SURFACE			%		1100	Ν	10 20	30 40	50 60	70 8	0 90	
	0.1 1	0		- TOPSOIL : 100 mr FILL :	n/	Ň	SS-1A		19				$\left \right $	+			
	2	6		SANDY CLAYEY S	SILT, some clay, trace potlets, brownish grey,		SS-1B	92	14	1-1-2-2	3						
	3 <u>+</u> 1.0 4 <u>+</u>			Brownish grey, mo	ist, very stiff	X	SS-2	46	8	6-6-11-15	17						Ţ
	5 1.5 6 7 2.0				AY TILL to SANDY _, trace gravel, greyish oist, hard	X	SS-3	96	8	8-12-20-25	32						
	8						SS-4	100	7	3-14-25-30	39	-0					
	10 - 3.0 11 - 3.0 11 - 12 - 12	25		Auger grinding		X	SS-5	100	6	25-40-45-50/ 100mm	95	0				•	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7		Grey		X	SS-6	100	6	25-50/ 100mm	100						•
NSPEC_SOL.GDT 12/1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Auger grinding		X	SS-7	100	6	8-30-50/ 125mm	100	0					
H GRAPH+WELL T040774A1.GF	23 - 7.0 $24 - 7.0$ $25 - 7.0$ $25 - 7.0$ $26 - 8.0$ $27 - 7.0$ $28 - 7.0$ $28 - 7.0$ $20 - 7.0$					X	SS-8	100	6	10-27-50/ 75mm	100						•
SOIL LOG W.	29 9.0 30)				X	SS-9	100	5	40-47-50/	100	0					

INSPEC SOLIGDT GP.J Ē WFLI LOG WITH GRAPH

REFERENCE No	.:	T040774a1								ENC	LOS	UREI	No.: .		13	
			BOREHOLE No	: _	E	<u>3H13</u>	-12		B	OF	REF	IOL	E I	RE	> 0	RT
iNSP	EC+S	OL	ELEVATION:								Page	: _2	0	f _2	_	
CLIENT:	Hydro	One Networks Inc.							LEC	GEN	ID					
PROJECT:	Geoteo	chnical Investigation	n - Clarington Transfo	me	er Station	۱			\boxtimes			SPLIT	SPO	NC		
LOCATION:	Townli	ne Road North and	Concession Road #7	Cl	arington	, Onta	ario					SHELE AUGE				
DESCRIBED BY:	R. Kha	abbaznia	CHECKED BY:		F. Bag	neri						VATE				
DATE (START):	Novem	nber 13, 2012	DATE (FINISH)	:	Novem	ber 1	3, 201	2								
Depth Elevation (m)	Stratigraphy	DESCRII SOIL AND	PTION OF BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index/SCR	Sh Se ○ w _p w	Nsitivit Wate Atter	st (Cu) ty (S) er cont rberg li /alue 12 in3	ent (% mits (%	5) %)	Field Lab	
Feet Metres		GROUND	SURFACE			%			Ν	,		0 40 5	,		90	
32 -								100mm								
3310.0															\square	
4 – 10.21 34 –		Auger grinding]												
35 —				×	SS-10	100	4	50/	100	0					Þ	
36 -11.0								125mm								
37														$\left \right $	$\left \right $	
39 <u>-</u> 																
					SS-11	100	11	50/ 125mm	100	0		_		$\left \right $	+	
42																
43 - 13.0		Clay pockets		-												
		Auger grinding														
45 —					SS-12	100	10	50/	100							
46								125mm								
47 —												_				
49 <u>-</u> 15.0																
		Trace sand and grav	vel, grey, very moist	M	SS-13	100	8	25-30-47-45	77	0						
52 - 15.85				Δ												
53	<u> </u>	END OF BOREHOL	<u>.</u> E													
54		NOTE :	15 95 m haa													
55 —	\	End of Borehole at Water level at 1.08 r completion									+				+	
5617.0		ogs denotes below (ground surface													
57 —																
58											+				\square	
$ \begin{array}{c} $																
															\square	
					1	I	I					1				

HYDROGEOLOGIC & HYDROLOGIC ASSESSMENT REPORT CLARINGTON TRANSFORMER STATION

Appendix C Water Well Records March 10, 2014

Appendix C Water Well Records

Well ID	Zone	Easting	Northing	Well Type	Well Use	Date
						Constructed
1901742	17	673953	4872757	Water Supply	Livestock	3/2/1954
1902984	17	674155	4872223	Water Supply	Domestic	11/11/1970
1903352	17	673715	4872773	Water Supply	Domestic	2/18/1972
1903511	17	674165	4872313	Water Supply	Domestic	6/6/1972
1903520	17	674055	4872093	Water Supply	Domestic	12/29/1972
1904535	17	673575	4872943	Water Supply	Domestic	11/1/1976
1905014	17	673295	4873063	Water Supply	Domestic	10/16/1977
1905307	17	674115	4872323	Water Supply	Domestic	4/27/1979
1907905	17	673381	4872974	Water Supply	Domestic	9/1/1986
1909285	17	673454	4873111	Water Supply	Domestic	7/29/1988
1910299	17	673699	4872803	Water Supply	Domestic	11/22/1989
1912514	17	673672	4872041	Water Supply	Domestic	7/20/1995
1912622	17	673412	4872031	Water Supply	Domestic	10/26/1995
4600450	17	672430	4871780	Water Supply	Livestock	5/18/1959
4600451	17	672589	4871849	Water Supply	Domestic	11/16/1959
1916307	17	673452	4873111	Water Supply	Domestic	9/26/2002
1918378	17	672999	4872014	Water Supply	Domestic	6/19/2006
7102525	17	672820	4871777	Observation Well	Monitoring	12/19/2007
7128981	17	673438	4872158	Water Supply	unknown	1/1/2009
7157947	17	673849	4872145	Water Supply	Domestic	11/19/2010

C1: WELL USE DETAILS

C2: WELL STRATIGRAPHY

Well ID	Zone	Easting	Northing	Ground Elev.	Formation Top	Formation Base	Formation Top	Formation Base	Primary	Secondary	Tertiary	Material
				(m AMSL)	(m BGS)	(m BGS)	(m AMSL)	(m AMSL)	Material	Material	Material	Colour
1901742	17	673953	4872757	248.19	68.58	68.88	179.61	179.30	GRAVEL	-	-	
1902984	17	674155	4872223	231.64	6.10	10.36	225.55	221.28	MEDIUM SAND	STONES	GRAVEL	BROWN
1903352	17	673715	4872773	241.42	13.72	15.24	227.70	226.18	GRAVEL	SAND	-	BROWN
1903511	17	674165	4872313	233.15	8.84	9.75	224.31	223.39	COARSE SAND	-	-	GREY
1903520	17	674055	4872093	228.62	7.62	8.23	221.00	220.39	SAND	GRAVEL	-	GREY
1904535	17	673575	4872943	250.57	2.44	2.74	248.13	247.83	GRAVEL	WATER-BEARING	-	
1905014	17	673295	4873063	269.46	96.93	97.54	172.53	171.92	GRAVEL	-	-	BLUE
1905307	17	674115	4872323	234.16	56.39	58.22	177.77	175.95	SAND	GRAVEL	LOOSE	BROWN
1907905	17	673381	4872974	268.39	104.24	108.20	164.15	160.19	MEDIUM SAND	FINE SAND	-	GREY
1909285	17	673454	4873111	260.39	13.72	14.33	246.67	246.06	SAND	WATER-BEARING	-	GREY
1910299	17	673699	4872803	242.56	64.62	65.84	177.94	176.72	COARSE SAND	WATER-BEARING	LOOSE	BROWN
1912514	17	673672	4872041	241.07	57.91	60.96	183.16	180.11	GRAVEL	SAND	-	GREY
1912622	17	673412	4872031	251.31	65.23	67.06	186.09	184.26	SAND	GRAVEL	-	BROWN
4600450	17	672430	4871780	232.87	13.41	19.20	219.46	213.67	GRAVEL	COARSE SAND	MEDIUM SAND	
4600451	17	672589	4871849	226.66	21.34	22.56	205.33	204.11	GRAVEL	-	-	
1916307	17	673452	4873111	260.54	70.41	71.63	190.13	188.91	SAND	-	-	GREY
1918378	17	672999	4872014	230.17	47.85	49.07	182.32	181.10	GRAVEL	WATER-BEARING	-	BROWN
7102525	17	672820	4871777	221.51	10.70	13.72	210.81	207.79	SAND	SILTY	CLAY	GREY
7128981	17	673438	4872158	251.91	7.62	11.43	244.29	240.48	CLAY	SILT	STONES	GREY
7157947	17	673849	4872145	-	17.68	18.90	-	-	MEDIUM SAND	-	LOOSE	BROWN

Well ID	Zone	Easting	Northing	Ground Elev.	Screen Top	Screen Bottom	Screen Top	Screen Bottom
				(m AMSL)	(m BGS)	(m BGS)	(m AMSL)	(m AMSL)
1901742	17	673953	4872757	248.19	-	-	-	-
1902984	17	674155	4872223	231.64	-	-	-	-
1903352	17	673715	4872773	241.42	-	-	-	-
1903511	17	674165	4872313	233.15	-	-	-	-
1903520	17	674055	4872093	228.62	-	-	-	-
1904535	17	673575	4872943	250.57	-	-	-	-
1905014	17	673295	4873063	269.46	-	-	-	-
1905307	17	674115	4872323	234.16	55.17	56.39	178.99	177.77
1907905	17	673381	4872974	268.39	106.98	108.20	161.41	160.19
1909285	17	673454	4873111	260.39	-	-	-	-
1910299	17	673699	4872803	242.56	64.62	65.84	177.94	176.72
1912514	17	673672	4872041	241.07	59.74	60.96	181.33	180.11
1912622	17	673412	4872031	251.31	65.84	67.06	185.48	184.26
4600450	17	672430	4871780	232.87	17.98	19.20	214.89	213.67
4600451	17	672589	4871849	226.66	-	-	-	-
1916307	17	673452	4873111	260.54	70.41	71.63	190.13	188.91
1918378	17	672999	4872014	230.17	47.85	49.07	182.32	181.10
7102525	17	672820	4871777	221.51	-	-	-	-
7128981	17	673438	4872158	251.91	-	-	-	-
7157947	17	673849	4872145	-	17.68	18.90	-	-

C3: WELL SCREEN DETAILS

Well ID	Zone	Easting	Northing	Ground Elev.	Static Water Level	Static Water Elev.	Date
				(m AMSL)	(m BGS)	(m BGS)	Constructed
1901742	17	673953	4872757	248.19	44.20	203.99	3/2/1954
1902984	17	674155	4872223	231.64	8.53	223.11	11/11/1970
1903352	17	673715	4872773	241.42	7.32	234.10	2/18/1972
1903511	17	674165	4872313	233.15	3.35	229.79	6/6/1972
1903520	17	674055	4872093	228.62	7.62	221.00	12/29/1972
1904535	17	673575	4872943	250.57	2.44	248.13	11/1/1976
1905014	17	673295	4873063	269.46	49.38	220.08	10/16/1977
1905307	17	674115	4872323	234.16	27.43	206.73	4/27/1979
1907905	17	673381	4872974	268.39	46.33	222.06	9/1/1986
1909285	17	673454	4873111	260.39	2.13	258.26	7/29/1988
1910299	17	673699	4872803	242.56	28.96	213.60	11/22/1989
1912514	17	673672	4872041	241.07	32.00	209.06	7/20/1995
1912622	17	673412	4872031	251.31	38.40	212.91	10/26/1995
4600450	17	672430	4871780	232.87	5.49	227.38	5/18/1959
4600451	17	672589	4871849	226.66	9.14	217.52	11/16/1959
1916307	17	673452	4873111	260.54	38.10	222.44	9/26/2002
1918378	17	672999	4872014	230.17	19.20	210.97	6/19/2006
7102525	17	672820	4871777	221.51	-	-	12/19/2007
7128981	17	673438	4872158	251.91	-	-	1/1/2009
7157947	17	673849	4872145	-	-	-	11/19/2010

C4: WATER LEVEL DATA

HYDROGEOLOGIC & HYDROLOGIC ASSESSMENT REPORT CLARINGTON TRANSFORMER STATION

Appendix D Hydrology March 10, 2014

Appendix D Hydrology

Hydro One Networks Inc. Clarington - 1609-60745 NRCS (SCS) Curve Number Determination

Existing Conditions

Soil Type

Hvdrologic Soil Group

Loam/Muck

nyarologic Soli	Group
В	

	TABLE OF CURVE NUMBERS (CN's)												
Land Use				H	ydrologic So	il Type			Source				
	D												
Meadow "	Good"	30	44	58	64.5	71	74.5	78	MTO				
Woodlot "I	Fair"	36	48	60	66.5	73	76	79	MTO				
Lawns "(Good"	39	50	61	67.5	74	77	80	USDA				
Pasture/Rang	ge	58	61.5	65	70.5	76	78.5	81	MTO				
Crop		66	70	74	78	82	84	86	MTO				
Gravel		76	80.5	85	87	89	90	91	Chin				
Bare Soil (Fa	allow)	77	81.5	86	88.5	91	92.5	94	MTO				
Impervious		98	98	98	98	98	98	98	MTO				

MTO - Ministry of Transportation Ontario Drainage Manual (1997), Design Chart 1.09-Soil/Land Use Curve Numbers USDA - United States Department of Agriculture (2004), National Engineering Handbook, Part 630 Hydrology,

Chapter 9 Hydrologic Soil Cover Compexes

Chin - Water-Resources Engineering (2000), David A. Chin, Table 6.13 Curve Numbers for Various Urban Land Uses

	HYDROLOGIC SOIL TYPE (%) - Existing Conditions							
	Hydrologic Soil Type							
Catchment	А	AB	В	BC	С	CD	D	TOTAL
100			100					100
101			100					100
102			100					100
103			100					100

	LAND USE (%) - Existing Conditions								
Catchment	Meadow	Woodlot	Lawns	Pasture	Crop	Gravel	Bare Soil	Impervious	Total
				Range					
100		20.0			80				100.0
101		10.0			90				100.0
102		5.0			95				100.0
103		5.0			95				100.0

		CURVE NU	MBER (CN) - Existing	Conditions	;				
Catchment	Meadow	Woodlot	Lawns	Pasture	Crop	Gravel	Bare Soil	Impervious	Weighted CN	Weighted CN
				Range					w/ imp area	w/o imp area
100		12.0			59.2				71	71
101		6.0			66.6				73	73
102		3.0			70.3				73	73
103		3.0			70.3				73	73

Notes:

AMC II assumed

Hydrological Soil Groups taken from MTO Drainage Manual ^{*1} Catchments with impervious greater than 20% - only pervious portions used for CN calculation

Hydro One Networks Inc. Clarington - 1609-60745 **SWMHYMO Parameters**

Existing Conditions

Catchment Number	Outlet	SWMHYMO Command	Area	CN	TIMP	XIMP	Rise	Length	Slope	Тс	Тр
			(ha)				(m)	(m)	(%)	(hrs)	(hrs)
100		DESIGN NASHYD	24	/1			35	990	3.5	1.01	0.61
101		DESIGN NASHYD	77	73			55	1760	3.1	1.41	0.85
102		DESIGN NASHYD	142	73			50	1980	2.5	1.82	1.09
103		DESIGN NASHYD	23	73			25	575	4.3	0.72	0.43

Notes:

TIMP

XIMP

Time of Concentration calculated using the SCS Lag Equation (For areas greater than 100 ha)

Time of Concentration calculated using the Airport Method

Total percent impervious Percent impervious directly connected $Tc = [259L^{0.8} [(1000 / CN) - 9]^{0.7}] / [1900S^{0.5}]$ Where: L = Length of Overland Flow (m)CN = SCS Curve Number S = Slope(%) $Tc = [3.26 (1.1-C) L^{0.5}] / S^{0.33}$ C = Runoff Coefficient = 0.2 for undeveloped area: Where: L = Length of Overland Flow (m) S = Slope(%)

Time to Peak

(For areas less than 100 ha)

Tp = 0.6TcCN calculated for pervious areas only for CALIB STANDHYD. CN is a weighed average for CALIB NASHYD

C:\SWMHYMO\HONIex.dat

00001>	2 Metric units	*******
		Hydro One - Clarington Trasnformer Station
00004>	*# Project Number:	1609-60745
00005>	*# Date :	May 15, 2012
		T. Fraser June 5, 2012 by S. Robertson]
00007>	*# Modeller : *# Revised : *# Company :	June 5, 2012 by S. Robertson]
00008>	*# Company :	Stantec Consulting Ltd. (Kitchener) 4730904
00010>		1/20201
00011>	*# This hydrologic	analysis was prepared to determine the flows to and across
00012>	*# the Site in thi:	s part of the Harmony Creek Watershed.
00013>	*#	***************************************
00014>	CTADT	TZERO-[0 0]brc or dato METOUT-[2] NETORM-[1] NRUN-[1]
00016>	*	<pre>TZERO=[0.0]hrs or date, METOUT=[2], NSTORM=[1], NRUN=[1] ["bm2yr.6h"] <storm filename,="" for="" line="" nstorm="" one="" per="" pre="" time<=""></storm></pre>
00017>	* &	
		STORM_FILENAME=["STORM.001"]
	*# Existing Condit:	
		North-central portion of Site tributary to Key Point A
00023>	* %	
00024>	CALIB NASHYD	<pre>ID=[1], NHYD=["100"], DT=[5]min, AREA=[24](ha), DWF=[0](cms), CN/C=[71], IA=[7.0](mm),</pre>
00025>		DWF=[0](cms), CN/C=[/1], IA=[/.0](mm), N=[3], TP=[0.61]hrs,
000282		RAINFALL=[, , , ,](mm/hr), END=-1
	* %	
00029>	*# Catchment 101 -	West end of site, western edge of Harmony Cr watershed
00030>	*8	TD (0) NUND (#101#) DT (5):// DTD (70)().)
00031>	CALIB NASHID	<pre>ID=[2], NHYD=["101"], DT=[5]min, AREA=[78](ha), DWF=[0](cms), CN/C=[73], IA=[7.0](mm),</pre>
00033>		N=[3], TP=[0.85]hrs,
00034>		RAINFALL=[, , , ,] (mm/hr), END=-1
		ts 100 and 101 (Key Point B)
		IDsum=[3], NHYD=["ADD1"], IDs to add=[1+2]
		East catchment, drains to southeast end of site (Key Pt C)
00042>	CALIB NASHYD	<pre>ID=[4], NHYD=["102"], DT=[5]min, AREA=[142](ha), DWF=[0](cms), CN/C=[73], IA=[7.0](mm),</pre>
00044>		N=[3], TP=[1.09]hrs,
00045>		RAINFALL=[, , , ,] (mm/hr), END=-1
	* %	
		South portion of site, discharging off-site at Key Point D
		ID=[5], NHYD=["103"], DT=[5]min, AREA=[23](ha),
00050>		DWF=[0](cms), CN/C=[73], IA=[7.0](mm),
00051>		N=[3], TP=[0.43]hrs,
00052>	+0	RAINFALL=[, , , ,](mm/hr), END=-1
	*% START	TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[2]
	*8	["bm5yr.6h"] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" tim<=""></storm>
00056>	* %	
00057>	*% START *%	TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[3]
00058>	* %	["bm100yr.6h"] <storm filename,="" for="" line="" nstorm="" one="" per="" t<="" td=""></storm>
00060>	START	TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[7]
00061>	*8	<pre>TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[7] ["bm2yr.24h"] <storm filename,="" for="" line="" nstorm="" one="" per="" pre="" ti<=""></storm></pre>
00062>	* %	
	START	TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[8]
00064>		["bm5yr.24h"] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" ti<=""></storm>
		TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[9]
00067>	*8	["bm100yr.24h"] <storm filename,="" for="" line="" nstorm<="" one="" per="" td=""></storm>
	* %	
00069>	FINISH	
000102		

C:\SWMHYMO\HONIex.sum

May 15, 2012 T. Fraser June 5, 2012 by S. Robertson] Stantec Consulting Ltd. (Kitchener) 4730904 Date Modeller Revised Company License # 00136> 00137> 00137> 00138> 00139> 00140>
 SSSS
 W
 W
 M
 H
 H
 Y
 Y
 M
 M
 0
 999

 S
 W
 W
 MM
 M
 H
 Y
 Y
 MM
 M
 0
 9
 9

 SSSS
 W
 W
 M
 H
 H
 Y
 M
 M
 0
 0
 ##
 9
 9

 S
 W
 M
 M
 H
 H
 Y
 M
 M
 0
 0
 9999

 SSSS
 W
 M
 M
 H
 H
 M
 M
 0
 0
 9999

 SSSS
 W
 M
 H
 H
 Y
 M
 M
 0
 9999
 999 999 9 9 9 9 9 9 9 9 Ver 4.05 Sept 2011 000006> 9999 9 9 9 999 999 This hydrologic analysis was prepared to determine the flows to and across the Site in this part of the Harmony Creek Watershed. # 4730904 StormWater Management HYdrologic Model ****** 00146> 002:0002-----READ STORM Filename = STORM.001 SWHEYMO Ver/4.05
 A single event and continuous hydrologic simulation model
 based on the principles of HYMO and its successors
 OTTHYMO-83 and OTTHYMO-89. 00147> 00148> 00014> 00015> 00016> 00017> 00018> 00149> 00150> 00151> 00152> 00152> Comment = [SDT=15.00:SDUR= 6.00:PTOT= 50.00] Comment [SDT=15.00:SDUR= 6.00:PTOT= 50.00] # Existing Conditions Catchment 100 - North-central portion of Site tributary to Key Point A 002:0003-------R.V.-CALIE NASHTD 01:100 24.00 .460 No_date 3:55 12.60 [CN=71.0: N= 3.00] # Catchment 101 - Western edge of Harmony Cr watershed 002:0004nt 101 - West-TUDNHYD------AREA----QFEAK-TpeakDate_hhrmm---R.V.-CALIE NASHTD 02:101 78.00 1.260 No_date 3:55 13.50 Distributed by: J.F. Sabourin and Associates Inc. Ottawa, Ontario: (613) 836-3884 Gatineau, Quebec: (819) 243-6558 E-Mail: swmhymo@jfsa.Com 00019> 00020> 00021> 00022> 00154> 00155> 00155> 00156> 00157> 00158> +++++++ Licensed user: Stantec Consulting Ltd. (Kitchener) +++++++ +++++++ Kitchener SERIAL# 4730904 ++++++++ 00024> 00025> 00026> 00027> 00028> 00159> 00160>

 ++++++
 PROGRAM ARRAY DIMENSIONS ++++++

 Maximum value for ID numbers : 10

 Max.number of rainfall points: 105408

 ++++++
 PROGRAM ARRAY DIMENSIONS ++++++

 Maximum value for ID numbers : 10

 Max. number of rainfall points: 105408

 Max. number of flow points : 105408
 00029> 00030> 00164> 00165> 00034> 00035> 00169> 00170> ***** DESCRIPTION SUMMARY TABLE HEADERS (units depend on METOUT in START) ***** 00036> 00037> 00038> CALIB NASHYD 05 [CN= 73.0: N= 3.00] [Tp= .43:DT= 5.00] ** END OF RUN : 2 **** 00174> 00175> 00040> 00041> 00042> 00043> 00176> 00177> 00178> 00178> 00179> 00190> 00045> * * * * * 00046> 00181> 00047>00048> RUN:COMMAND# ***** 00051> 00052> 00053> 00054> 003:0001-----START [TZERO = [METOUT= [NSTORM= 00186> .00 hrs on 0] 2 (1=imperial, 2=metric output)] 2 1] * DATE: 2012-06-06 TIME: 11:28:01 RUN COUNTER: 000104 Input filename: C:\SWMHYMO\HONIex.dat
Output filename: C:\SWMHYMO\HONIex.out
Summary filename: C:\SWMHYMO\HONIex.sum
User comments:
1:
2: [NRUN = 00057> 00058> 00059> 00060> Project Name : Hydro One - Clarington Trasnformer Station Project Number: 1609-60745 Date : May 15, 2012 Modeller : T. Fraser Revised : June 5, 2012 by S. Robertson] Company : Stantec Consulting Ltd. (Kitchener) License # : 4730904 00060> 00061> 00062> 00063> 00064> 00065> 00196> 00197> 00198> * 3:_____ # Project Name : Hydro One - Clarington Trasnformer Station
Project Number: 1609-60745
Date This hydrologic analysis was prepared to determine the flows to and across the Site in this part of the Harmony Creek Watershed. 00067> 00068> Project Name : Hydro One - Clarington Trasnformer Station Project Number: 1609-60745 Date : May 16, 2012 Modelaet : T. Fraser Company : 00204> READ STORM Filename -Comment -00205> 00206> 00207> 00208> = STORM.001 Filename = SIGRM.001 Comment = [SDT=15.00:SDUR= 6.00:PTOT= 83.10] # Existing Conditions # Catchment 100 - North-central portion of Site tributary to Key Point A 003:0003-------DINHYD-------REA----QFEAK-TpeakDate_hh:mm---R.V.-CALIB NASHYD 01:100 24.00 1.215 No_date 3:35 32.20 00074> 00075> 00076> 00077> 00209> 00210> 00211> 00212> 00213> This hydrologic analysis was prepared to determine the flows to and across the Site in this part of the Harmony Creek Watershed. 00078> 00079> 00080> 00081> 00082> 00083> 00214> 00215> 00216> 00216> 00217> 00218> RUN:COMMAND# 001:0001-----START
 START
 [TZERO = .00 hrs on 0]

 [METOUT= 2 (l=imperial, 2=metric output)]

 [NSTORM= 1]

 [NRUN = 1]

 0002-----

 READ STORM
 00084> 00085> 00219> 00220> 00086> 00087> 00088> 00221> 00222> 00223> 001:0 Filename = STORM.001 00089> 00224> 00225> Filename = STORM.001 Comment = [SDT=15.00:SDUR= 6.00:PTOT= 37.90] # Existing Conditions # Catchment 100 - North-central portion of Site tributary to Key Point A 001:0003 - NORTHONDERSTON - AREA----QPEAK-TpeakDate_hh:mm---CALIB MASHTO--------DININTO-------AREA----QPEAK-TpeakDate_hh:mm---01:001-003---------DININTO--------REA----QPEAK-TpeakDate_hh:mm---001:0004---------DININTO--------REA----QPEAK-TpeakDate_hh:mm---CALIB NASHTD 02:101 78.00 .697 No_date 3:55 [CIN-73.0: N= 3.00] 00091> 00092> 00093> 00226> 00227> 00228>
 CALIB NASHYD
 Odd 102
 142.00
 4.924
 No_date
 hirmm--R.V.-(IN= 73.0: N= 3.00)

 [Tp= 1.09:DT= 5.00]
 [Tp= 1.09:DT= 5.00]
 [Tp= 1.09:DT= 5.00]
 [Tp= 1.09:DT= 5.00]

 Ø Catchment 103 - South portion of site, discharging off-site at Key Point D
 003:0007------DI:NHYD------REA-T-DeakDate_hh:mm--R.V.-(CALIB NASHYD
 05:103
 23.00
 1.587 No_date
 3:20
 34.06

 [Tp- 4.3:DT= 5.00]
 ** END OF RUN :
 6
 ---R.V.-7.09 00094> 00095> 00231> 00232> 00233> 00096> 00233> CALIB NASHYD 05:103 23.00 1.587 No_date 3:20 34.06 00234> [CN=73.0: N= 3.00] 00235> [Tp= .43:DT=5.00] 00235> #END OF RUN : 6 00237> 00238> 00239> 00239> --R.V. 00104> 001:00 00103> 00106> 00107> 00108> 00109> 00110> 00241> 00242> 00243> 00244> 00245> RUN:COMMAND# 007:0001-----00246> START UU240> 51ANI TZERO = .00 hrs on 0] 00247> [MTFOUT= 2 (1=imperial, 2=metric output)] 00249> [NSTORM 1] 00250> [NRUN = 7] Project Name : Hydro One - Clarington Trasnformer Station Project Number: 1609-60745 Date : May 15, 2012 Modeller : T. Fraser Revised : June 5, 2012 by S. Robertson] Company : Stantec Consulting Ltd. (Kitchener) License # : 4730304 00117> 00118> 00252> 00252> 00253> 00254> 00255> 00257> 00258> This hydrologic analysis was prepared to determine the flows to and across the Site in this part of the Harmony Creek Watershed. RUN:COMMAND# 002:0001----START 00127: ***** 00128> START 00129> [TZERO = .00 hrs on 0] 00130> [METOUT= 2 (1=imperial, 2=metric output)] 00131> [NSTORM= 1] 00132> [NRUN = 2] READ STORM Filename = STORM.001 Comment = (SDT-15.00:SDUR= 24.00:PTOT= 47.10) 00264> 00265> 00266> 00267> 00268> 00260> # Existing Conditions 00270> # Catchment 100 - North-central portion of Site tributary to Key Point A 00134> # Project Name : Hydro One - Clarington Trasnformer Station 00135> # Project Number: 1609-60745

Stantec Consulting Ltd. (Kitchener)

Page 0

1609-60745

C:\SWMHYMO\HONIex.sum

00299> 00300> 00301> 00302> 00303> RUN:COMMAND# 008:0001-----START [TZERO = [METOUT= [NSTORM= 00304> .00 hrs on 0] 2 (1=imperial, 2=metric output)] 1] 00306> 00307> 00308> 00309> [NRUN = 8] 00310> #*********** 00310> # Project Name : Hydro One - Clarington Trasnformer Station 00311> # Project Number: 1609-60745 00313> # Date : May 15, 2012 003154 # Modeller : T. Fraser 003155 # Revised : June 5, 2012 bS. Robertson] 003155 # Company : Stantec Consulting Ltd. (Kitchener) 00317> # License # : 473304 00318> # 00319> # This hydrologic analysis was prepared to determine the flows to and across 00321> # the Site in this part of the Harmony Creek Watershed. READ STORM Filename = STORM.001 00328> 00329> 00330> 00331> 00359> 00360> 00361> 00362> RUN:COMMAND# 00363> 009:0001----START [TZERO = 00365> START 00365> [TZERO = .00 hrs on 0] 00366> [METOUT= 2 (1=imperial, 2=metric output)] 00367> [NSTORM= 1] 00368> [NRUN = 9] 00369> [NTUN = 9] 00364> 00365> 00360> ↓ Project Name : Hydro One - Clarington Trasnformer Station 00371> ↓ Project Number: 1609-60745 00372> ↓ Date : May 15, 2012 00373> ↓ Modeller : T. Fraser 00374> ↓ Revised : June 5, 2012 by S. Robertson] 00375> ↓ Company : Stantec Consulting Ltd. (Kitchener) 00375 ↓ Cicense ↓ icense ↓ i 00380>

Stantec Consulting Ltd. (Kitchener)

Existing Conditions - Summary Output

00417> 00418> WARNINGS / ERRORS / NOTES

Simulation ended on 2012-06-06 at 11:28:10 00419> 00420> == 00421>